@phdthesis{Galliat, author = {Galliat, Tobias}, title = {Adaptive Multilevel Cluster Analysis by Self-Organizing Box Maps}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:188-2002001258}, abstract = {Als Cluster Analyse bezeichnet man den Prozess der Suche und Beschreibung von Gruppen (Clustern) von Objekten, so daß die Objekte innerhalb eines Clusters bez{\"u}glich eines gegebenen Maßes maximal homogen sind. Die Homogenit{\"a}t der Objekte h{\"a}ngt dabei direkt oder indirekt von den Auspr{\"a}gungen ab, die sie f{\"u}r eine Anzahl festgelegter Attribute besitzen. Die Suche nach Clustern l{\"a}ßt sich somit als Optimierungsproblem auffassen, wobei die Anzahl der Cluster vorher bekannt sein muß. Wenn die Anzahl der Objekte und der Attribute groß ist, spricht man von komplexen, hoch-dimensionalen Cluster Problemen. In diesem Fall ist eine direkte Optimierung zu aufwendig, und man ben{\"o}tigt entweder heuristische Optimierungsverfahren oder Methoden zur Reduktion der Komplexit{\"a}t. In der Vergangenheit wurden in der Forschung fast ausschließlich Verfahren f{\"u}r geometrisch basierte Clusterprobleme entwickelt. Bei diesen Problemen lassen sich die Objekte als Punkte in einem von den Attributen aufgespannten metrischen Raum modellieren; das verwendete Homogenit{\"a}tsmaß basiert auf der geometrischen Distanz der den Objekten zugeordneten Punkte. Insbesondere zur Bestimmung sogenannter metastabiler Cluster sind solche Verfahren aber offensichtlich nicht geeignet, da metastabile Cluster, die z.B. in der Konformationsanalyse von Biomolek{\"u}len von zentraler Bedeutung sind, nicht auf einer geometrischen, sondern einer dynamischen {\"A}hnlichkeit beruhen. In der vorliegenden Arbeit wird ein allgemeines Clustermodell vorgeschlagen, das zur Modellierung geometrischer, wie auch dynamischer Clusterprobleme geeignet ist. Es wird eine Methode zur Komplexit{\"a}tsreduktion von Clusterproblemen vorgestellt, die auf einer zuvor generierten Komprimierung der Objekte innerhalb des Datenraumes basiert. Dabei wird bewiesen, daß eine solche Reduktion die Clusterstruktur nicht zerst{\"o}rt, wenn die Komprimierung fein genug ist. Mittels selbstorganisierter neuronaler Netze lassen sich geeignete Komprimierungen berechnen. Um eine signifikante Komplexit{\"a}tsreduktion ohne Zerst{\"o}rung der Clusterstruktur zu erzielen, werden die genannten Methoden in ein mehrstufiges Verfahren eingebettet. Da neben der Identifizierung der Cluster auch deren effiziente Beschreibung notwendig ist, wird ferner eine spezielle Art der Komprimierung vorgestellt, der eine Boxdiskretisierung des Datenraumes zugrunde liegt. Diese erm{\"o}glicht die einfache Generierung von regelbasierten Clusterbeschreibungen. F{\"u}r einen speziellen Typ von Homogenit{\"a}tsfunktionen, die eine stochastische Eigenschaft besitzen, wird das mehrstufige Clusterverfahren um eine Perroncluster Analyse erweitert. Dadurch wird die Anzahl der Cluster, im Gegensatz zu herk{\"o}mmlichen Verfahren, nicht mehr als Eingabeparameter ben{\"o}tigt. Mit dem entwickelten Clusterverfahren kann erstmalig eine computergest{\"u}tzte Konformationsanalyse großer, f{\"u}r die Praxis relevanter Biomolek{\"u}le durchgef{\"u}hrt werden. Am Beispiel des HIV Protease Inhibitors VX-478 wird dies detailliert beschrieben.}, language = {en} }