@misc{CordesWeberSchmidtEhrenberg, author = {Cordes, Frank and Weber, Marcus and Schmidt-Ehrenberg, Johannes}, title = {Metastable Conformations via successive Perron-Cluster Cluster Analysis of dihedrals}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7074}, number = {02-40}, abstract = {Decomposition of the high dimensional conformational space of bio-molecules into metastable subsets is used for data reduction of long molecular trajectories in order to facilitate chemical analysis and to improve convergence of simulations within these subsets. The metastability is identified by the Perron-cluster cluster analysis of a Markov process that generates the thermodynamic distribution. A necessary prerequisite of this analysis is the discretization of the conformational space. A combinatorial approach via discretization of each degree of freedom will end in the so called ''curse of dimension''. In the following paper we analyze Hybrid Monte Carlo simulations of small, drug-like biomolecules and focus on the dihedral degrees of freedom as indicators of conformational changes. To avoid the ''curse of dimension'', the projection of the underlying Markov operator on each dihedral is analyzed according to its metastability. In each decomposition step of a recursive procedure, those significant dihedrals, which indicate high metastability, are used for further decomposition. The procedure is introduced as part of a hierarchical protocol of simulations at different temperatures. The convergence of simulations within metastable subsets is used as an ''a posteriori'' criterion for a successful identification of metastability. All results are presented with the visualization program AmiraMol.}, language = {en} } @misc{HuisingaBestCordesetal., author = {Huisinga, Wilhelm and Best, Christoph and Cordes, Frank and Roitzsch, Rainer and Sch{\"u}tte, Christof}, title = {From Simulation Data to Conformational Ensembles: Structure and Dynamics based Methods}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3797}, number = {SC-98-36}, abstract = {Statistical methods for analyzing large data sets of molecular configurations within the chemical concept of molecular conformations are described. The strategies are based on dependencies between configurations of a molecular ensemble; the article concentrates on dependencies induces by a) correlations between the molecular degrees of freedom, b) geometrical similarities of configurations, and c) dynamical relations between subsets of configurations. The statistical technique realizing aspect a) is based on an approach suggested by {\sc Amadei et al.} (Proteins, 17 (1993)). It allows to identify essential degrees of freedom of a molecular system and is extended in order to determine single configurations as representatives for the crucial features related to these essential degrees of freedom. Aspects b) and c) are based on statistical cluster methods. They lead to a decomposition of the available simulation data into {\em conformational ensembles} or {\em subsets} with the property that all configurations in one of these subsets share a common chemical property. In contrast to the restriction to single representative conformations, conformational ensembles include information about, e.g., structural flexibility or dynamical connectivity. The conceptual similarities and differences of the three approaches are discussed in detail and are illustrated by application to simulation data originating from a hybrid Monte Carlo sampling of a triribonucleotide.}, language = {en} } @misc{GalliatDeuflhardRoitzschetal., author = {Galliat, Tobias and Deuflhard, Peter and Roitzsch, Rainer and Cordes, Frank}, title = {Automatic Identification of Metastable Conformations via Self-Organized Neural Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6197}, number = {00-51}, abstract = {As has been shown recently, the identification of metastable chemical conformations leads to a Perron cluster eigenvalue problem for a reversible Markov operator. Naive discretization of this operator would suffer from combinatorial explosion. As a first remedy, a pre-identification of essential degrees of freedom out of the set of torsion angles had been applied up to now. The present paper suggests a different approach based on neural networks: its idea is to discretize the Markov operator via self-organizing (box) maps. The thus obtained box discretization then serves as a prerequisite for the subsequent Perron cluster analysis. Moreover, this approach also permits exploitation of additional structure within embedded simulations. As it turns out, the new method is fully automatic and efficient also in the treatment of biomolecules. This is exemplified by numerical results.}, language = {en} }