@misc{FranzoneDeuflhardErdmannetal., author = {Franzone, Piero Colli and Deuflhard, Peter and Erdmann, Bodo and Lang, Jens and Pavarino, Luca Franco}, title = {Adaptivity in Space and Time for Reaction-Diffusion Systems in Electrocardiology}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8649}, number = {05-30}, abstract = {Adaptive numerical methods in space and time are introduced and studied for multiscale cardiac reaction-diffusion models in three dimensions. The evolution of a complete heartbeat, from the excitation to the recovery phase, is simulated with both the anisotropic Bidomain and Monodomain models, coupled with either a variant of the simple FitzHugh-Nagumo model or the more complex phase-I Luo-Rudy ionic model. The simulations are performed with the {\sc kardos} library, that employs adaptive finite elements in space and adaptive linearly implicit methods in time. The numerical results show that this adaptive method successfully solves these complex cardiac reaction-diffusion models on three-dimensional domains of moderate sizes. By automatically adapting the spatial meshes and time steps to the proper scales in each phase of the heartbeat, the method accurately resolves the evolution of the intra- and extra-cellular potentials, gating variables and ion concentrations during the excitation, plateau and recovery phases.}, language = {en} } @misc{DeuflhardErdmannRoitzschetal., author = {Deuflhard, Peter and Erdmann, Bodo and Roitzsch, Rainer and Lines, Glenn Terje}, title = {Adaptive Finite Element Simulation of Ventricular Fibrillation Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9431}, number = {06-49}, abstract = {The dynamics of ventricular fibrillation caused by irregular excitation is simulated in the frame of the monodomain model with an action potential model due to Aliev-Panfilov for a human 3D geometry. The numerical solution of this multiscale reaction-diffusion problem is attacked by algorithms which are fully adaptive in both space and time (code library {\sc Kardos}). The obtained results clearly demonstrate an accurate resolution of the cardiac potential during the excitation and the plateau phases (in the regular cycle) as well as after a reentrant excitation (in the irregular cycle).}, language = {en} }