@misc{HammerschmidtHerrmannPomplunetal., author = {Hammerschmidt, Martin and Herrmann, Sven and Pomplun, Jan and Burger, Sven and Schmidt, Frank}, title = {Model order reduction for the time-harmonic Maxwell equation applied to complex nanostructures}, series = {Proc. SPIE}, volume = {9742}, journal = {Proc. SPIE}, issn = {1438-0064}, doi = {10.1117/12.2212367}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57239}, pages = {97420M}, abstract = {Fields such as optical metrology and computational lithography require fast and efficient methods for solving the time-harmonic Maxwell's equation. Highly accurate geometrical modeling and numerical accuracy atcomputational costs are a prerequisite for any simulation study of complex nano-structured photonic devices. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem based on the hp-adaptive finite element solver JCMsuite capable of handling geometric and non-geometric parameter dependencies allowing for online evaluations in milliseconds. We apply the RBM to compute light-scatteringoptical wavelengths off periodic arrays of fin field-effect transistors (FinFETs) where geometrical properties such as the width and height of the fin and gate can vary in a large range.}, language = {en} } @misc{HammerschmidtBarthPomplunetal., author = {Hammerschmidt, Martin and Barth, Carlo and Pomplun, Jan and Burger, Sven and Becker, Christiane and Schmidt, Frank}, title = {Reconstruction of photonic crystal geometries using a reduced basis method for nonlinear outputs}, issn = {1438-0064}, doi = {10.1117/12.2212482}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57249}, abstract = {Maxwell solvers based on the hp-adaptive finite element method allow for accurate geometrical modeling and high numerical accuracy. These features are indispensable for the optimization of optical properties or reconstruction of parameters through inverse processes. High computational complexity prohibits the evaluation of the solution for many parameters. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem allowing to compute solutions for a parameter configuration orders of magnitude faster. The RBM allows to evaluate linear and nonlinear outputs of interest like Fourier transform or the enhancement of the electromagnetic field in milliseconds. We apply the RBM to compute light-scattering off two dimensional photonic crystal structures made of silicon and reconstruct geometrical parameters.}, language = {en} }