@article{YokoyamaShinanoWakui, author = {Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {時間集約によるエネルギー供給システムの 近似最適設計解の導出および評価 (階層的最適化を援用した設計解の評価)}, series = {エネルギー・資源学会第38回エネルギーシステム・経済・環境コンファレンス講演論文集}, journal = {エネルギー・資源学会第38回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {468 -- 473}, abstract = {For the purpose of attaining the highest performance of energy supply systems, it is important to design the systems optimally in consideration of their operational strategies for seasonal and hourly variations in energy demands. An ap- proach to solve such an optimal design problem with a large number of periods efficiently is to derive an approximate optimal design solution by aggregating periods with a clustering method. However, such an approach does not provide any information on the accuracy for the optimal value of the objective function. The purpose of this paper is to provide a time aggregation method for deriving aprroximate optimal design solutions and evaluting their values of the objective function. Especially, a method of evaluating design solutions is presented here using both methods of evaluating the robustness under uncertain energy demands and solving optimal design problems by a hierarchical approach. A case study is conducted for a cogeneration system with a practical configuration, and it turns out that the proposed approach enables one to evaluate effective lower bounds for the optimal value of the objective function as compared with those obtained by a conventional approach.}, language = {ja} } @article{YokoyamaShinanoWakui, author = {Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {時間集約によるエネルギー供給システムの 近似最適設計解の導出および評価 (階層的最適化を援用した近似最適設計)}, series = {第41回エネルギー・資源学会研究発表会講演論文集}, journal = {第41回エネルギー・資源学会研究発表会講演論文集}, pages = {144 -- 148}, abstract = {For the purpose of attaining the highest performance of energy supply systems, it is important to design the systems optimally in consideration of their operational strategies for seasonal and hourly variations in energy demands. An ap- proach to efficiently solve such an optimal design problem with a large number of periods for variations in energy de- mands is to derive an approximate optimal design solution by aggregating periods with a clustering method. However, such an approach does not provide any information on the accuracy for the optimal value of the objective function. The purpose of this paper is to propose a time aggregation approach for deriving suitable aprroximate optimal design solutions and evaluting their values of the objective function accurately. This time aggregation approach is realized by combining a robust optimal design method under uncertain energy demands and a hierarchical approach for solving large scale optimal design problems. A case study is conducted for a cogeneration system with a practical configuration, and it turns out that the proposed approach enables one to evaluate effective upper and lower bounds for the optimal value of the objective function as compared with those obtained by a conventional approach.}, language = {ja} } @article{KamadaYokoyamaShinanoetal., author = {Kamada, Hiroki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {混合整数線形モデルによる エネルギー供給システムのロバスト最適設計 (階層的最適化手法の適用)}, series = {エネルギー・資源学会第35回エネルギーシステム・経済・環境コンファレンス講演論文集}, journal = {エネルギー・資源学会第35回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {163 -- 168}, abstract = {A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed- integer linear model for constituent equipment. A robust optimal design problem has been formulated as a three-level min-max- min optimization one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering hierarchical relationships among design variables, uncertain energy demands, and operation variables. However, this method takes a long computation time, and thus it can be applied only to small-scale problems. In this paper, mixed-integer linear programming method in consideration of the hierarchical relationship between design and operation variables is applied to parts of the robust optimal design method which take long computation times to solve problems efficiently. In a case study, this revised method is applied to the robust optimal design of a cogeneration system with a simple configuration, and the validity and effectiveness of the method are ascertained.}, language = {ja} } @article{WakayamaYokoyamaShinanoetal., author = {Wakayama, Yuki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {階層的最適化によるエネルギ ー供給システムの最適設計・運用 (期間のクラスタリングに よるモデル縮約とその効果)}, series = {日本機械学会関西支部第93期定時総会講演会講演論文集}, journal = {日本機械学会関西支部第93期定時総会講演会講演論文集}, pages = {259 -- 260}, abstract = {Ahierarchical mixed-integer linear programmingmethod has been proposed to solve optimal design problems of energy supply systems efficiently. In this paper, a method of reducing model by clustering periods is proposed to search design solution candidates efficiently in the relaxed optimal design problem at the upper level. This method is realized only by clustering periods and averaging energy demands for clustered periods, while it guarantees to derive the optimal solution. Through acase study on the optimaldesign of a cogeneration system, ti is clarified how the model reduction si effective ot enhance the computation efficiency.}, language = {ja} } @article{KamadaYokoyamaShinanoetal., author = {Kamada, Hiroki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {階層的最適化手法の援用による エネルギー供給システムのロバスト最適設計}, series = {エネルギー・資源学会第36回エネルギーシステム・経済・環境コンファレンス講演論文集}, journal = {エネルギー・資源学会第36回エネルギーシステム・経済・環境コンファレンス講演論文集}, pages = {730 -- 735}, abstract = {A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed- integer linear model for constituent equipment. A robust optimal design problem has been formulated as a three-level min-max- min optimization one by expressing uncertain energy demands by intervals, evaluating the robustness in a performance criterion based on the minimax regret criterion, and considering hierarchical relationships among design variables, uncertain energy demands, and operation variables. Since this problem must be solved by a special algorithm and is too difficult to solve even using a commercial solver, a hierarchical optimization approach has been applied to solve the problem but its application is limited only to small scale toy problems. In this paper, some strategies are introduced into the hierarchical optimization approach to enhance the computation efficiency for the purpose of applying the approach to large scale practical problems. In a case study, the proposed approach is applied to the robust optimal design of a cogeneration system with a complex configuration, and the validity and effectiveness of the method are ascertained.}, language = {ja} } @article{KamadaYokoyamaShinanoetal., author = {Kamada, Hiroki and Yokoyama, Ryohei and Shinano, Yuji and Wakui, Tetsuya}, title = {階層的最適化手法を用いた エネルギー供給システムのロバスト性評価}, series = {日本機械学会関西支部第95期定時総会講演会講演論文集}, journal = {日本機械学会関西支部第95期定時総会講演会講演論文集}, pages = {1 -- 4}, abstract = {A robust optimal design method of energy supply systems under uncertain energy demands has been proposed using a mixed-integer linear model for constituent equipment. However, this method takes a long computation time, and thus it can be applied only to small-scale problems. In this paper, a hierarchical optimization method is applied to two types of optimization problems for evaluating robustness to solve them efficiently. In a case study, the proposed method is applied to a cogeneration system with a complex configuration, and the validity and effectiveness of the method are ascertained.}, language = {ja} }