@article{BanyassadyChiuKormanetal., author = {Banyassady, Bahareh and Chiu, Man-Kwun and Korman, Matias and Mulzer, Wolfgang and van Renssen, Andr{\´e} and Roeloffzen, Marcel and Seiferth, Paul and Stein, Yannik and Vogtenhuber, Birgit and Willert, Max}, title = {Routing in polygonal domains}, series = {Computational Geometry, Theory and Applications}, volume = {87}, journal = {Computational Geometry, Theory and Applications}, publisher = {Elsevier}, doi = {10.1016/j.comgeo.2019.101593}, abstract = {We consider the problem of routing a data packet through the visibility graph of a polygonal domain P with n vertices and h holes. We may preprocess P to obtain a "label" and a "routing table" for each vertex of P. Then, we must be able to route a data packet between any two vertices p and q of P, where each step must use only the label of the target node q and the routing table of the current node. For any fixed epsilon > 0, we present a routing scheme that always achieves a routing path whose length exceeds the shortest path by a factor of at most 1 + epsilon. The labels have O(log n) bits, and the routing tables are of size O(((epsilon^-1)+h)log n). The preprocessing time is O((n^2)log n). It can be improved to O(n^2) for simple polygons.}, language = {en} }