@article{DelleSiteKrekelerWhittakeretal., author = {Delle Site, Luigi and Krekeler, Christian and Whittaker, John and Agarwal, Animesh and Klein, Rupert and H{\"o}fling, Felix}, title = {Molecular Dynamics of Open Systems: Construction of a Mean-Field Particle Reservoir}, series = {Advanced Theory and Simulations}, volume = {2}, journal = {Advanced Theory and Simulations}, doi = {10.1002/adts.201900014}, pages = {1900014}, abstract = {The simulation of open molecular systems requires explicit or implicit reservoirs of energy and particles. Whereas full atomistic resolution is desired in the region of interest, there is some freedom in the implementation of the reservoirs. Here, a combined, explicit reservoir is constructed by interfacing the atomistic region with regions of point-like, non-interacting particles (tracers) embedded in a thermodynamic mean field. The tracer molecules acquire atomistic resolution upon entering the atomistic region and equilibrate with this environment, while atomistic molecules become tracers governed by an effective mean-field potential after crossing the atomistic boundary. The approach is extensively tested on thermodynamic, structural, and dynamic properties of liquid water. Conceptual and numerical advantages of the procedure as well as new perspectives are highlighted and discussed.}, language = {en} }