@misc{HoppmannHenningsLenzetal., author = {Hoppmann, Kai and Hennings, Felix and Lenz, Ralf and Gotzes, Uwe and Heinecke, Nina and Spreckelsen, Klaus and Koch, Thorsten}, title = {Optimal Operation of Transient Gas Transport Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73639}, language = {en} } @article{HoppmannBaumHenningsZitteletal., author = {Hoppmann-Baum, Kai and Hennings, Felix and Zittel, Janina and Gotzes, Uwe and Spreckelsen, Eva-Maria and Spreckelsen, Klaus and Koch, Thorsten}, title = {An Optimization Approach for the Transient Control of Hydrogen Transport Networks}, series = {Mathematical Methods of Operations Research}, journal = {Mathematical Methods of Operations Research}, number = {Special Issue on Energy Networks}, language = {en} } @article{HoppmannBaumHenningsLenzetal.2020, author = {Hoppmann-Baum, Kai and Hennings, Felix and Lenz, Ralf and Gotzes, Uwe and Heinecke, Nina and Spreckelsen, Klaus and Koch, Thorsten}, title = {Optimal Operation of Transient Gas Transport Networks}, series = {Optimization and Engineering}, volume = {22}, journal = {Optimization and Engineering}, doi = {10.1007/s11081-020-09584-x}, pages = {735 -- 781}, year = {2020}, abstract = {In this paper, we describe an algorithmic framework for the optimal operation of transient gas transport networks consisting of a hierarchical MILP formulation together with a sequential linear programming inspired post-processing routine. Its implementation is part of the KOMPASS decision support system, which is currently used in an industrial setting. Real-world gas transport networks are controlled by operating complex pipeline intersection areas, which comprise multiple compressor units, regulators, and valves. In the following, we introduce the concept of network stations to model them. Thereby, we represent the technical capabilities of a station by hand-tailored artificial arcs and add them to network. Furthermore, we choose from a predefined set of flow directions for each network station and time step, which determines where the gas enters and leaves the station. Additionally, we have to select a supported simple state, which consists of two subsets of artificial arcs: Arcs that must and arcs that cannot be used. The goal is to determine a stable control of the network satisfying all supplies and demands. The pipeline intersections, that are represented by the network stations, were initially built centuries ago. Subsequently, due to updates, changes, and extensions, they evolved into highly complex and involved topologies. To extract their basic properties and to model them using computer-readable and optimizable descriptions took several years of effort. To support the dispatchers in controlling the network, we need to compute a continuously updated list of recommended measures. Our motivation for the model presented here is to make fast decisions on important transient global control parameters, i.e., how to route the flow and where to compress the gas. Detailed continuous and discrete technical control measures realizing them, which take all hardware details into account, are determined in a subsequent step. In this paper, we present computational results from the KOMPASS project using detailed real-world data.}, language = {en} } @misc{HoppmannBaumHenningsZitteletal., author = {Hoppmann-Baum, Kai and Hennings, Felix and Zittel, Janina and Gotzes, Uwe and Spreckelsen, Eva-Maria and Spreckelsen, Klaus and Koch, Thorsten}, title = {From Natural Gas towards Hydrogen - A Feasibility Study on Current Transport Network Infrastructure and its Technical Control}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79901}, abstract = {This study examines the usability of a real-world, large-scale natural gas transport infrastructure for hydrogen transport. We investigate whether a converted network can transport the amounts of hydrogen necessary to satisfy current energy demands. After introducing an optimization model for the robust transient control of hydrogen networks, we conduct computational experiments based on real-world demand scenarios. Using a representative network, we demonstrate that replacing each turbo compressor unit by four parallel hydrogen compressors, each of them comprising multiple serial compression stages, and imposing stricter rules regarding the balancing of in- and outflow suffices to realize transport in a majority of scenarios. However, due to the reduced linepack there is an increased need for technical and non-technical measures leading to a more dynamic network control. Furthermore, the amount of energy needed for compression increases by 364\% on average.}, language = {en} } @article{PedersenSpreckelsenGotzesetal., author = {Pedersen, Jaap and Spreckelsen, Klaus and Gotzes, Uwe and Zittel, Janina and Koch, Thorsten}, title = {Beimischung von Wasserstoff zum Erdgas: Eine Kapazit{\"a}tsstudie des deutschen Gasnetzes}, series = {gwf Gas + Energie}, journal = {gwf Gas + Energie}, edition = {06/2023}, publisher = {Vulkan Verlag}, abstract = {Die europaische Gasinfrastruktur wird disruptiv in ein zukunftiges dekarbonisiertes Energiesystem ver{\"a}ndert; ein Prozess, der angesichts der j{\"u}ngsten politischen Situation beschleunigt werden muss. Mit einem wachsenden Wasserstoffmarkt wird der pipelinebasierte Transport unter Nutzung der bestehenden Erdgasinfrastruktur wirtschaftlich sinnvoll, tr{\"a}gt zur Erh{\"o}hung der {\"o}ffentlichen Akzeptanz bei und beschleunigt den Umstellungsprozess. In diesem Beitrag wird die maximal technisch machbare Einspeisung von Wasserstoff in das bestehende deutsche Erdgastransportnetz hinsichtlich regulatorischer Grenzwerte der Gasqualit{\"a}t analysiert. Die Analyse erfolgt auf Basis eines transienten Tracking-Modells, das auf dem allgemeinen Pooling-Problem einschließlich Linepack aufbaut. Es zeigt sich, dass das Gasnetz auch bei strengen Grenzwerten gen ̈ugend Kapazit{\"a}t bietet, um f{\"u}r einen großen Teil der bis 2030 geplanten Erzeugungskapazit{\"a}t f{\"u}r gr{\"u}nen Wasserstoff als garantierter Abnehmer zu dienen.}, language = {de} } @article{PedersenSpreckelsenGotzesetal., author = {Pedersen, Jaap and Spreckelsen, Klaus and Gotzes, Uwe and Zittel, Janina and Koch, Thorsten}, title = {Beimischung von Wasserstoff zum Erdgas: Eine Kapazit{\"a}tsstudie des deutschen Gasnetzes}, series = {3R - Fachzeitschrift f{\"u}r Rohrleitungssystem}, journal = {3R - Fachzeitschrift f{\"u}r Rohrleitungssystem}, number = {06/2023}, pages = {70 -- 75}, abstract = {Die europ{\"a}ische Gasinfrastruktur wird disruptiv in ein zuk{\"u}nftiges dekarbonisiertes Energiesystem ver{\"a}ndert; ein Prozess, der angesichts der j{\"u}ngsten politischen Situation beschleunigt werden muss. Mit einem wachsenden Wasserstoffmarkt wird der pipelinebasierte Transport unter Nutzung der bestehenden Erdgasinfrastruktur wirtschaftlich sinnvoll, tr{\"a}gt zur Erh{\"o}hung der {\"o}ffentlichen Akzeptanz bei und beschleunigt den Umstellungsprozess. In diesem Fachbeitrag wird die maximal technisch machbare Einspeisung von Wasserstoff in das bestehende deutsche Erdgastransportnetz hinsichtlich regulatorischer Grenzwerte der Gasqualit{\"a}t analysiert. Die Analyse erfolgt auf Basis eines transienten Tracking-Modells, das auf dem allgemeinen Pooling-Problem einschließlich Linepack aufbaut. Es zeigt sich, dass das Gasnetz auch bei strengen Grenzwerten gen{\"u}gend Kapazit{\"a}t bietet, um f{\"u}r einen großen Teil der bis 2030 geplanten Erzeugungskapazit{\"a}t f{\"u}r gr{\"u}nen Wasserstoff als garantierter Abnehmer zu dienen.}, language = {de} }