@article{BorndoerferFuegenschuhKlugetal., author = {Bornd{\"o}rfer, Ralf and F{\"u}genschuh, Armin and Klug, Torsten and Schang, Thilo and Schlechte, Thomas and Sch{\"u}lldorf, Hanno}, title = {The Freight Train Routing Problem for Congested Railway Networks with Mixed Traffic}, series = {Transportation Science}, volume = {50}, journal = {Transportation Science}, number = {2}, doi = {10.1287/trsc.2015.0656}, pages = {408 -- 423}, abstract = {We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that the sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. In this context, macroscopic refers to an aggregation of complex and large real-world structures into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We provide a mixed-integer nonlinear programming (MINLP) formulation for the FTRP, which is a multicommodity flow model on a time-expanded graph with additional routing constraints. The model's nonlinearities originate from an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model (MILP) by piecewise linear approximation. The latter is solved by a state-of-the art MILP solver for various real-world test instances.}, language = {en} } @misc{FischerGrimmKlugetal., author = {Fischer, Frank and Grimm, Boris and Klug, Torsten and Schlechte, Thomas}, title = {A Re-optimization Approach for Train Dispatching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60493}, abstract = {The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.}, language = {en} }