@article{HellerFleischmannKramer, author = {Heller, Eric J. and Fleischmann, Ragnar and Kramer, Tobias}, title = {Branched Flow}, abstract = {In many physical situations involving diverse length scales, waves or rays representing them travel through media characterized by spatially smooth, random, modest refractive index variations. "Primary" diffraction (by individual sub-wavelength features) is absent. Eventually the weak refraction leads to imperfect focal "cusps". Much later, a statistical regime characterized by momentum diffusion is manifested. An important intermediate regime is often overlooked, one that is diffusive only in an ensemble sense. Each realization of the ensemble possesses dramatic ray limit structure that guides the waves (in the same sense that ray optics is used to design lens systems). This structure is a universal phenomenon called branched flow. Many important phenomena develop in this intermediate regime. Here we give examples and some of the physics of this emerging field.}, language = {en} } @article{KramerLaeuter, author = {Kramer, Tobias and L{\"a}uter, Matthias}, title = {Outgassing induced acceleration of comet 67P/Churyumov-Gerasimenko}, series = {Astronomy \& Astrophysics}, volume = {630}, journal = {Astronomy \& Astrophysics}, doi = {10.1051/0004-6361/201935229}, pages = {A4}, abstract = {Cometary activity affects the orbital motion and rotation state due to sublimation induced forces. The availability of precise rotation-axis orientation and position data from the Rosetta mission allows one to accurately determine the outgassing of comet Churyumov-Gerasimenko/67P (67P). We derive the observed non-gravitational acceleration of 67P directly from the Rosetta spacecraft trajectory. From the non-gravitational acceleration we recover the diurnal outgassing variations and study a possible delay of the sublimation response with respect to the peak solar illumination. This allows us to compare the non-gravitational acceleration of 67P with expectations based on empirical models and common assumptions about the sublimation process. We use an iterative orbit refinement and Fourier decomposition of the diurnal activity to derive the outgassing induced non-gravitational acceleration. The uncertainties of the data reduction are established by a sensitivity analysis of an ensemble of best-fit orbits for comet 67P. We find that the Marsden non-gravitational acceleration parameters reproduce part of the non-gravitational acceleration but need to be augmented by an analysis of the nucleus geometry and surface illumination to draw conclusions about the sublimation process on the surface. The non-gravitational acceleration follows closely the subsolar latitude (seasonal illumination), with a small lag angle with respect to local noon around perihelion. The observed minor changes of the rotation axis do not favor forced precession models for the non-gravitational acceleration. In contrast to the sublimation induced torques, the non-gravitational acceleration does not put strong constraints on localized active areas on the nucleus. We find a close agreement of the orbit deduced non-gravitational acceleration and the water production independently derived from Rosetta in-situ measurement.}, language = {en} } @article{KramerLaeuterHviidetal., author = {Kramer, Tobias and L{\"a}uter, Matthias and Hviid, Stubbe and Jorda, Laurent and Keller, Horst Uwe and K{\"u}hrt, Ekkehard}, title = {Comet 67P/Churyumov-Gerasimenko rotation changes derived from sublimation induced torques}, series = {Astronomy \& Astrophysics}, volume = {630}, journal = {Astronomy \& Astrophysics}, doi = {10.1051/0004-6361/201834349}, pages = {A3}, abstract = {Context. The change of the rotation period and the orientation of the rotation axis of comet 67P/Churyumov-Gerasimenko (67P/C-G) is deducible from images taken by the scientific imaging instruments on-board the Rosetta mission with high precision. Non gravitational forces are a natural explanation for these data. Aims. We describe observed changes for the orientation of the rotation axis and the rotation period of 67P/C-G. For these changes we give an explanation based on a sublimation model with a best-fit for the surface active fraction (model P). Torque effects of periodically changing gas emissions on the surface are considered. Methods. We solve the equation of state for the angular momentum in the inertial and the body- fixed frames and provide an analytic theory of the rotation changes in terms of Fourier coefficients, generally applicable to periodically forced rigid body dynamics. Results. The torque induced changes of the rotation state constrain the physical properties of the surface, the sublimation rate and the local active fraction of the surface. Conclusions. We determine a distribution of the local surface active fraction in agreement with the rotation properties, period and orientation, of 67P/C-G. The torque movement confirms that the sublimation increases faster than the insolation towards perihelion. The derived relatively uniform activity pattern is discussed in terms of related surface features.}, language = {en} } @article{LaeuterKramerRubinetal.2018, author = {L{\"a}uter, Matthias and Kramer, Tobias and Rubin, Martin and Altwegg, Kathrin}, title = {Surface localization of gas sources on comet 67P/Churyumov-Gerasimenko based on DFMS/COPS data}, series = {Monthly Notices of the Royal Astronomical Society}, volume = {483}, journal = {Monthly Notices of the Royal Astronomical Society}, publisher = {Monthly Notices of the Royal Astronomical Society}, doi = {10.1093/mnras/sty3103}, pages = {852 -- 861}, year = {2018}, abstract = {We reconstruct the temporal evolution of the source distribution for the four major gas species H2O, CO2, CO, and O2 on the surface of comet 67P/Churyumov-Gerasimenko during its 2015 apparition. The analysis applies an inverse coma model and fits to data between August 6th 2014 and September 5th 2016 measured with the Double Focusing Mass Spectrometer (DFMS) of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) and the COmet Pressure Sensor (COPS). The spatial distribution of gas sources with their temporal variation allows one to construct surface maps for gas emissions and to evaluate integrated productions rates. For all species peak production rates and integrated productions rates per orbit are evaluated separately for the northern and the southern hemisphere. The nine most active emitting areas on the comet's surface are defined and their correlation to emissions for each of the species is discussed.}, language = {en} } @article{RodriguezKramer, author = {Rodr{\´i}guez, Mirta and Kramer, Tobias}, title = {Machine Learning of Two-Dimensional Spectroscopic Data}, series = {Chemical Physics}, volume = {520}, journal = {Chemical Physics}, doi = {10.1016/j.chemphys.2019.01.002}, pages = {52 -- 60}, abstract = {Two-dimensional electronic spectroscopy has become one of the main experimental tools for analyzing the dynamics of excitonic energy transfer in large molecular complexes. Simplified theoretical models are usually employed to extract model parameters from the experimental spectral data. Here we show that computationally expensive but exact theoretical methods encoded into a neural network can be used to extract model parameters and infer structural information such as dipole orientation from two dimensional electronic spectra (2DES) or reversely, to produce 2DES from model parameters. We propose to use machine learning as a tool to predict unknown parameters in the models underlying recorded spectra and as a way to encode computationally expensive numerical methods into efficient prediction tools. We showcase the use of a trained neural network to efficiently compute disordered averaged spectra and demonstrate that disorder averaging has non-trivial effects for polarization controlled 2DES.}, language = {en} }