@misc{ArnoldBertholdHeinzetal., author = {Arnold, Thomas and Berthold, Timo and Heinz, Stefan and Vigerske, Stefan and Henrion, Ren{\´e} and Gr{\"o}tschel, Martin and Koch, Thorsten and Tischendorf, Caren and R{\"o}misch, Werner}, title = {A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs}, series = {MATHEON - Mathematics for Key Technologies}, volume = {1}, journal = {MATHEON - Mathematics for Key Technologies}, editor = {Deuflhard, Peter and Gr{\"o}tschel, Martin and H{\"o}mberg, Dietmar and Horst, Ulrich and Kramer, J{\"u}rg and Mehrmann, Volker and Polthier, Konrad and Schmidt, Frank and Sch{\"u}tte, Christof and Skutella, Martin and Sprekels, J{\"u}rgen}, publisher = {European Mathematical Society}, doi = {10.4171/137}, pages = {135 -- 146}, abstract = {Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de}, language = {en} } @misc{ArnoldBertholdHeinzetal., author = {Arnold, Thomas and Berthold, Timo and Heinz, Stefan and Vigerske, Stefan and Henrion, Ren{\´e} and Gr{\"o}tschel, Martin and Koch, Thorsten and Tischendorf, Caren and R{\"o}misch, Werner}, title = {A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs}, issn = {1438-0064}, doi = {10.4171/137}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49947}, abstract = {Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de}, language = {en} } @misc{AchterbergBertholdKochetal., author = {Achterberg, Tobias and Berthold, Timo and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: a New Approach to Integrate CP and MIP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10520}, number = {08-01}, abstract = {This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques from SAT solving. SCIP is available in source code and free for non-commercial use. We demonstrate the usefulness of CIP on two tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we employ the CIP framework to solve chip design verification problems, which involve some highly non-linear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the non-linear constraints by employing constraint programming techniques.}, language = {en} } @inproceedings{AchterbergBertholdKochetal.2008, author = {Achterberg, Tobias and Berthold, Timo and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: A New Approach to Integrate CP and MIP}, series = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008}, volume = {5015}, booktitle = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008}, editor = {Perron, Laurent and Trick, Michael}, publisher = {Springer}, doi = {10.1007/978-3-540-68155-7_4}, pages = {6 -- 20}, year = {2008}, language = {en} } @misc{AchterbergBertholdHendel, author = {Achterberg, Tobias and Berthold, Timo and Hendel, Gregor}, title = {Rounding and Propagation Heuristics for Mixed Integer Programming}, doi = {10.1007/978-3-642-29210-1_12}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13255}, number = {11-29}, abstract = {Primal heuristics are an important component of state-of-the-art codes for mixed integer programming. In this paper, we focus on primal heuristics that only employ computationally inexpensive procedures such as rounding and logical deductions (propagation). We give an overview of eight different approaches. To assess the impact of these primal heuristics on the ability to find feasible solutions, in particular early during search, we introduce a new performance measure, the primal integral. Computational experiments evaluate this and other measures on MIPLIB~2010 benchmark instances.}, language = {en} } @misc{AchterbergBertholdHeinzetal., author = {Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: Techniques and Applications}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10950}, number = {08-43}, abstract = {This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques.}, language = {en} } @misc{AchterbergBerthold, author = {Achterberg, Tobias and Berthold, Timo}, title = {Improving the Feasibility Pump}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8754}, number = {05-42}, abstract = {The Feasibility Pump of Fischetti, Glover, Lodi, and Bertacco has proved to be a very successful heuristic for finding feasible solutions of mixed integer programs. The quality of the solutions in terms of the objective value, however, tends to be poor. This paper proposes a slight modification of the algorithm in order to find better solutions. Extensive computational results show the success of this variant: in 89 out of 121 MIP instances the modified version produces improved solutions in comparison to the original Feasibility Pump.}, language = {en} } @article{AchterbergBerthold2007, author = {Achterberg, Tobias and Berthold, Timo}, title = {Improving the Feasibility Pump}, series = {Discrete Optimization}, volume = {Special Issue 4}, journal = {Discrete Optimization}, number = {1}, pages = {77 -- 86}, year = {2007}, language = {en} } @inproceedings{AchterbergBerthold2009, author = {Achterberg, Tobias and Berthold, Timo}, title = {Hybrid Branching}, series = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009}, volume = {5547}, booktitle = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009}, editor = {van Hoeve, Willem and Hooker, John}, publisher = {Springer}, pages = {309 -- 311}, year = {2009}, language = {en} }