@misc{AchterbergBerthold, author = {Achterberg, Tobias and Berthold, Timo}, title = {Improving the Feasibility Pump}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8754}, number = {05-42}, abstract = {The Feasibility Pump of Fischetti, Glover, Lodi, and Bertacco has proved to be a very successful heuristic for finding feasible solutions of mixed integer programs. The quality of the solutions in terms of the objective value, however, tends to be poor. This paper proposes a slight modification of the algorithm in order to find better solutions. Extensive computational results show the success of this variant: in 89 out of 121 MIP instances the modified version produces improved solutions in comparison to the original Feasibility Pump.}, language = {en} } @misc{BertholdHeinzLuebbeckeetal., author = {Berthold, Timo and Heinz, Stefan and L{\"u}bbecke, Marco and M{\"o}hring, Rolf and Schulz, Jens}, title = {A Constraint Integer Programming Approach for Resource-Constrained Project Scheduling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11180}, number = {10-03}, abstract = {We propose a hybrid approach for solving the resource-constrained project scheduling problem which is an extremely hard to solve combinatorial optimization problem of practical relevance. Jobs have to be scheduled on (renewable) resources subject to precedence constraints such that the resource capacities are never exceeded and the latest completion time of all jobs is minimized. The problem has challenged researchers from different communities, such as integer programming (IP), constraint programming (CP), and satisfiability testing (SAT). Still, there are instances with 60 jobs which have not been solved for many years. The currently best known approach, lazyFD, is a hybrid between CP and SAT techniques. In this paper we propose an even stronger hybridization by integrating all the three areas, IP, CP, and SAT, into a single branch-and-bound scheme. We show that lower bounds from the linear relaxation of the IP formulation and conflict analysis are key ingredients for pruning the search tree. First computational experiments show very promising results. For five instances of the well-known PSPLIB we report an improvement of lower bounds. Our implementation is generic, thus it can be potentially applied to similar problems as well.}, language = {en} } @misc{BertholdHeinzVigerske, author = {Berthold, Timo and Heinz, Stefan and Vigerske, Stefan}, title = {Extending a CIP framework to solve MIQCPs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11371}, number = {09-23}, abstract = {This paper discusses how to build a solver for mixed integer quadratically constrained programs (MIQCPs) by extending a framework for constraint integer programming (CIP). The advantage of this approach is that we can utilize the full power of advanced MIP and CP technologies. In particular, this addresses the linear relaxation and the discrete components of the problem. For relaxation, we use an outer approximation generated by linearization of convex constraints and linear underestimation of nonconvex constraints. Further, we give an overview of the reformulation, separation, and propagation techniques that are used to handle the quadratic constraints efficiently. We implemented these methods in the branch-cut-and-price framework SCIP. Computational experiments indicates the potential of the approach.}, language = {en} } @misc{AchterbergBertholdKochetal., author = {Achterberg, Tobias and Berthold, Timo and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: a New Approach to Integrate CP and MIP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10520}, number = {08-01}, abstract = {This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques from SAT solving. SCIP is available in source code and free for non-commercial use. We demonstrate the usefulness of CIP on two tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we employ the CIP framework to solve chip design verification problems, which involve some highly non-linear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the non-linear constraints by employing constraint programming techniques.}, language = {en} } @misc{BertholdHeinzPfetsch, author = {Berthold, Timo and Heinz, Stefan and Pfetsch, Marc}, title = {Nonlinear pseudo-Boolean optimization: relaxation or propagation?}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11232}, number = {09-11}, abstract = {Pseudo-Boolean problems lie on the border between satisfiability problems, constraint programming, and integer programming. In particular, nonlinear constraints in pseudo-Boolean optimization can be handled by methods arising in these different fields: One can either linearize them and work on a linear programming relaxation or one can treat them directly by propagation. In this paper, we investigate the individual strengths of these approaches and compare their computational performance. Furthermore, we integrate these techniques into a branch-and-cut-and-propagate framework, resulting in an efficient nonlinear pseudo-Boolean solver.}, language = {en} } @misc{AchterbergBertholdHeinzetal., author = {Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: Techniques and Applications}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10950}, number = {08-43}, abstract = {This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques.}, language = {en} } @misc{BertholdPfetsch, author = {Berthold, Timo and Pfetsch, Marc}, title = {Detecting Orbitopal Symmetries}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10842}, number = {08-33}, abstract = {Orbitopes can be used to handle symmetries which arise in integer programming formulations with an inherent assignment structure. We investigate the detection of symmetries appearing in this approach. We show that detecting so-called orbitopal symmetries is graph-isomorphism hard in general, but can be performed in linear time if the assignment structure is known.}, language = {en} } @misc{BertholdHeinzPfetsch, author = {Berthold, Timo and Heinz, Stefan and Pfetsch, Marc}, title = {Solving Pseudo-Boolean Problems with SCIP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10671}, number = {08-12}, abstract = {Pseudo-Boolean problems generalize SAT problems by allowing linear constraints and a linear objective function. Different solvers, mainly having their roots in the SAT domain, have been proposed and compared,for instance, in Pseudo-Boolean evaluations. One can also formulate Pseudo-Boolean models as integer programming models. That is,Pseudo-Boolean problems lie on the border between the SAT domain and the integer programming field. In this paper, we approach Pseudo-Boolean problems from the integer programming side. We introduce the framework SCIP that implements constraint integer programming techniques. It integrates methods from constraint programming, integer programming, and SAT-solving: the solution of linear programming relaxations, propagation of linear as well as nonlinear constraints, and conflict analysis. We argue that this approach is suitable for Pseudo-Boolean instances containing general linear constraints, while it is less efficient for pure SAT problems. We present extensive computational experiments on the test set used for the Pseudo-Boolean evaluation 2007. We show that our approach is very efficient for optimization instances and competitive for feasibility problems. For the nonlinear parts, we also investigate the influence of linear programming relaxations and propagation methods on the performance. It turns out that both techniques are helpful for obtaining an efficient solution method.}, language = {en} } @misc{Berthold, author = {Berthold, Timo}, title = {Heuristics of the Branch-Cut-and-Price-Framework SCIP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10280}, number = {07-30}, abstract = {In this paper we give an overview of the heuristics which are integrated into the open source branch-cut-and-price-framework SCIP. We briefly describe the fundamental ideas of different categories of heuristics and present some computational results which demonstrate the impact of heuristics on the overall solving process of SCIP.}, language = {en} } @misc{Berthold, type = {Master Thesis}, author = {Berthold, Timo}, title = {Primal Heuristics for Mixed Integer Programs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10293}, school = {Zuse Institute Berlin (ZIB)}, abstract = {A lot of problems arising in Combinatorial Optimization and Operations Research can be formulated as Mixed Integer Programs (MIP). Although MIP-solving is an NP-hard optimization problem, many practically relevant instances can be solved in reasonable time. In modern MIP-solvers like the branch-cut-and-price-framework SCIP, primal heuristics play a major role in finding and improving feasible solutions at the early steps of the solution process. This helps to reduce the overall computational effort, guides the remaining search process, and proves the feasibility of the MIP model. Furthermore, a heuristic solution with a small gap to optimality often is sufficient in practice. We investigate 16 different heuristics, all of which are available in SCIP. Four of them arise from the literature of the last decade, nine are specific implementations of general heuristic ideas, three have been newly developed. We present an improved version of the feasibility pump heuristic by Fischetti et al., which in experiments produced solutions with only a third of the optimality gap compared to the original version. Furthermore, we introduce two new Large Neighborhood Search (LNS) heuristics. Crossover is an LNS improvement heuristic making use of similarities of diverse MIP solutions to generate new incumbent solutions. RENS is an LNS rounding heuristic which evaluates the space of all possible roundings of a fractional LP-solution. This heuristic makes it possible to determine whether a point can be rounded to an integer solution and which is the best possible rounding. We conclude with a computational comparison of all described heuristics. It points out that a single heuristic on its own has only a slight impact on the overall performance of SCIP, but the combination of all of them reduces the running time by a factor of two compared to a version without any heuristics.}, language = {en} } @misc{Berthold, author = {Berthold, Timo}, title = {RENS - Relaxation Enforced Neighborhood Search}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-4264}, number = {07-28}, abstract = {In the recent years, a couple of quite successful large neighborhood search heuristics for mixed integer programs has been published. Up to our knowledge, all of them are improvement heuristics. We present a new start heuristic for general MIPs working in the spirit of large neighborhood search. It constructs a sub-MIP which represents the space of all feasible roundings of some fractional point - normally the optimum of the LP-relaxation of the original MIP. Thereby, one is able to determine whether a point can be rounded to a feasible solution and which is the best possible rounding. Furthermore, a slightly modified version of RENS proves to be a well-performing heuristic inside the branch-cut-and-price-framework SCIP.}, language = {en} } @misc{KochAchterbergAndersenetal.2010, author = {Koch, Thorsten and Achterberg, Tobias and Andersen, Erling and Bastert, Oliver and Berthold, Timo and Bixby, Robert E. and Danna, Emilie and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Lodi, Andrea and Mittelmann, Hans and Ralphs, Ted and Salvagnin, Domenico and Steffy, Daniel and Wolter, Kati}, title = {MIPLIB 2010}, doi = {10.1007/s12532-011-0025-9}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12953}, number = {10-31}, year = {2010}, abstract = {This paper reports on the fifth version of the Mixed Integer Programming Library. The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups. This includes the main benchmark test set of 87 instances, which are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved. For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to test the accuracy of provided solutions using exact arithmetic.}, language = {en} } @misc{BertholdHeinzPfetschetal., author = {Berthold, Timo and Heinz, Stefan and Pfetsch, Marc and Vigerske, Stefan}, title = {Large Neighborhood Search beyond MIP}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12989}, number = {11-21}, abstract = {Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics.}, language = {en} } @misc{Berthold, author = {Berthold, Timo}, title = {Measuring the impact of primal heuristics}, issn = {1438-0064}, doi = {10.1016/j.orl.2013.08.007}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17887}, abstract = {In modern MIP solvers, primal heuristics play a major role in finding and improving feasible solutions early in the solution process. However, classical performance measures such as time to optimality or number of branch-and-bound nodes reflect the impact of primal heuristics on the overall solving process badly. This article discusses the question of how to evaluate the effect of primal heuristics. Therefore, we introduce a new performance measure, the "primal integral" which depends on the quality of solutions found during the solving process as well as on the points in time when they are found. Our computational results reveal that heuristics improve the performance of MIP solvers in terms of the primal bound by around 80\%. Further, we compare five state-of-the-art MIP solvers w.r.t. the newly proposed measure.}, language = {en} } @misc{BertholdGleixner, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover Branching}, issn = {1438-0064}, doi = {10.1007/978-3-642-38527-8_20}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18030}, abstract = {In this paper, we present a new branching strategy for nonconvex MINLP that aims at driving the created subproblems towards linearity. It exploits the structure of a minimum cover of an MINLP, a smallest set of variables that, when fixed, render the remaining system linear: whenever possible, branching candidates in the cover are preferred. Unlike most branching strategies for MINLP, Undercover branching is not an extension of an existing MIP branching rule. It explicitly regards the nonlinearity of the problem while branching on integer variables with a fractional relaxation solution. Undercover branching can be naturally combined with any variable-based branching rule. We present computational results on a test set of general MINLPs from MINLPLib, using the new strategy in combination with reliability branching and pseudocost branching. The computational cost of Undercover branching itself proves negligible. While it turns out that it can influence the variable selection only on a smaller set of instances, for those that are affected, significant improvements in performance are achieved.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten}, title = {ParaSCIP - a parallel extension of SCIP}, doi = {10.1007/978-3-642-24025-6_12}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11921}, number = {10-27}, abstract = {Mixed integer programming (MIP) has become one of the most important techniques in Operations Research and Discrete Optimization. SCIP (Solving Constraint Integer Programs) is currently one of the fastest non-commercial MIP solvers. It is based on the branch-and-bound procedure in which the problem is recursively split into smaller subproblems, thereby creating a so-called branching tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization on a distributed memory computing environment. ParaSCIP uses SCIP solvers as independently running processes to solve subproblems (nodes of the branching tree) locally. This makes the parallelization development independent of the SCIP development. Thus, ParaSCIP directly profits from any algorithmic progress in future versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve two previously unsolved instances from MIPLIB2003, a standard test set library for MIP solvers. For these computations, we used up to 2048 cores of the HLRN~II supercomputer.}, language = {en} } @misc{BertholdHeinzSchulz, author = {Berthold, Timo and Heinz, Stefan and Schulz, Jens}, title = {An approximative Criterion for the Potential of Energetic Reasoning}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12655}, number = {11-12}, abstract = {Energetic reasoning is one of the most powerful propagation algorithms in cumulative scheduling. In practice, however, it is not commonly used because it has a high running time and its success highly depends on the tightness of the variable bounds. In order to speed up energetic reasoning, we provide an easy-to-check necessary condition for energetic reasoning to detect infeasibilities. We present an implementation of energetic reasoning that employs this condition and that can be parametrically adjusted to handle the trade-off between solving time and propagation overhead. Computational results on instances from the PSPLIB are provided. These results show that using this condition decreases the running time by more than a half, although more search nodes need to be explored.}, language = {en} } @misc{BertholdGleixner, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover: a primal MINLP heuristic exploring a largest sub-MIP}, issn = {1438-0064}, doi = {10.1007/s10107-013-0635-2}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14631}, number = {12-07}, abstract = {We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers.}, language = {en} } @misc{BertholdSalvagnin, author = {Berthold, Timo and Salvagnin, Domenico}, title = {Cloud branching}, issn = {1438-0064}, doi = {10.1007/978-3-642-38171-3_3}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17301}, abstract = {Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud) of the current LP relaxation. These strategies naturally extend state-of-the-art methods like strong branching, pseudocost branching, and their hybrids. We show that by exploiting dual degeneracy, and thus multiple alternative optimal solutions, it is possible to enhance traditional methods. We present preliminary computational results, applying the newly proposed strategy to full strong branching, which is known to be the MIP branching rule leading to the fewest number of search nodes. It turns out that cloud branching can reduce the mean running time by up to 30\% on standard test sets.}, language = {en} } @misc{BertholdHendel, author = {Berthold, Timo and Hendel, Gregor}, title = {Shift-And-Propagate}, issn = {1438-0064}, doi = {10.1007/s10732-014-9271-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17596}, abstract = {For mixed integer programming, recent years have seen a growing interest in the design of general purpose primal heuristics for use inside complete solvers. Many of these heuristics rely on an optimal LP solution. Finding this may itself take a significant amount of time. The presented paper addresses this issue by the introduction of the Shift-And-Propagate heuristic. Shift-And-Propagate is a pre-root primal heuristic that does not require a previously found LP solution. It applies domain propagation techniques to quickly drive a variable assignment towards feasibility. Computational experiments indicate that this heuristic is a powerful supplement of existing rounding and propagation heuristics.}, language = {en} } @misc{BertholdGleixnerHeinzetal., author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Vigerske, Stefan}, title = {Analyzing the computational impact of MIQCP solver components}, issn = {1438-0064}, doi = {10.3934/naco.2012.2.739}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17754}, abstract = {We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.}, language = {en} } @misc{AchterbergBertholdHendel, author = {Achterberg, Tobias and Berthold, Timo and Hendel, Gregor}, title = {Rounding and Propagation Heuristics for Mixed Integer Programming}, doi = {10.1007/978-3-642-29210-1_12}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13255}, number = {11-29}, abstract = {Primal heuristics are an important component of state-of-the-art codes for mixed integer programming. In this paper, we focus on primal heuristics that only employ computationally inexpensive procedures such as rounding and logical deductions (propagation). We give an overview of eight different approaches. To assess the impact of these primal heuristics on the ability to find feasible solutions, in particular early during search, we introduce a new performance measure, the primal integral. Computational experiments evaluate this and other measures on MIPLIB~2010 benchmark instances.}, language = {en} } @misc{ArnoldBertholdHeinzetal., author = {Arnold, Thomas and Berthold, Timo and Heinz, Stefan and Vigerske, Stefan and Henrion, Ren{\´e} and Gr{\"o}tschel, Martin and Koch, Thorsten and Tischendorf, Caren and R{\"o}misch, Werner}, title = {A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs}, series = {MATHEON - Mathematics for Key Technologies}, volume = {1}, journal = {MATHEON - Mathematics for Key Technologies}, editor = {Deuflhard, Peter and Gr{\"o}tschel, Martin and H{\"o}mberg, Dietmar and Horst, Ulrich and Kramer, J{\"u}rg and Mehrmann, Volker and Polthier, Konrad and Schmidt, Frank and Sch{\"u}tte, Christof and Skutella, Martin and Sprekels, J{\"u}rgen}, publisher = {European Mathematical Society}, doi = {10.4171/137}, pages = {135 -- 146}, abstract = {Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de}, language = {en} } @article{BertholdHendelKoch2017, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {From feasibility to improvement to proof: three phases of solving mixed-integer programs}, series = {Optimization Methods and Software}, volume = {33}, journal = {Optimization Methods and Software}, number = {3}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2017.1392519}, pages = {499 -- 517}, year = {2017}, abstract = {Modern mixed-integer programming (MIP) solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three distinct phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behaviour of the non-commercial MIP solver Scip at the predicted phase transition points.}, language = {en} } @misc{GamrathBertholdHeinzetal., author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-driven fix-and-propagate heuristics for mixed integer programming}, issn = {1438-0064}, doi = {10.1007/s12532-019-00159-1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65387}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early in the solving process and help to solve instances to optimality faster. In this paper, we present a scheme for primal start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved as an LP and the solution is rounded. If the rounded solution did not provide a feasible solution already, a sub-MIP is solved for the neighborhood defined by the variable fixings performed in the first phase. The global structures help to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about three out of five instances and therewith help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.}, language = {en} } @misc{BertholdPerregaardMeszaros, author = {Berthold, Timo and Perregaard, Michael and M{\´e}sz{\´a}ros, Csaba}, title = {Four good reasons to use an Interior Point solver within a MIP solver}, issn = {1438-0064}, doi = {10.1007/978-3-319-89920-6_22}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64599}, abstract = {"Interior point algorithms are a good choice for solving pure LPs or QPs, but when you solve MIPs, all you need is a dual simplex." This is the common conception which disregards that an interior point solution provides some unique structural insight into the problem at hand. In this paper, we will discuss some of the benefits that an interior point solver brings to the solution of difficult MIPs within FICO Xpress. This includes many different components of the MIP solver such as branching variable selection, primal heuristics, preprocessing, and of course the solution of the LP relaxation.}, language = {en} } @inproceedings{HendelBertholdAchterberg, author = {Hendel, Gregor and Berthold, Timo and Achterberg, Tobias}, title = {Rounding and Propagation Heuristics for Mixed Integer Programming}, series = {Operations Research Proceedings 2011}, booktitle = {Operations Research Proceedings 2011}, pages = {71 -- 76}, abstract = {Primal heuristics are an important component of state-of-the-art codes for mixed integer programming. In this paper, we focus on primal heuristics that only employ computationally inexpensive procedures such as rounding and logical deductions (propagation). We give an overview of eight different approaches. To assess the impact of these primal heuristics on the ability to find feasible solutions, in particular early during search, we introduce a new performance measure, the primal integral. Computational experiments evaluate this and other measures on MIPLIB~2010 benchmark instances.}, language = {en} } @article{BertholdGleixner2014, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover: a primal MINLP heuristic exploring a largest sub-MIP}, series = {Mathematical Programming}, volume = {144}, journal = {Mathematical Programming}, number = {1-2}, doi = {10.1007/s10107-013-0635-2}, pages = {315 -- 346}, year = {2014}, abstract = {We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programming (MINLP) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a minimal set of variables that need to be fixed in order to linearize each constraint, a so-called cover. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. We apply domain propagation and conflict analysis to try to avoid infeasibilities and learn from them, respectively. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and general MINLPs from MINLPLib. It turns out that the majority of these instances allow for small covers. Although general in nature, the heuristic appears most promising for MIQCPs, and complements nicely with existing root node heuristics in different state-of-the-art solvers.}, language = {en} } @article{BertholdHendel, author = {Berthold, Timo and Hendel, Gregor}, title = {Shift-and-Propagate}, series = {Journal of Heuristics}, volume = {21}, journal = {Journal of Heuristics}, number = {1}, doi = {10.1007/s10732-014-9271-0}, pages = {73 -- 106}, abstract = {In recent years, there has been a growing interest in the design of general purpose primal heuristics for use inside complete mixed integer programming solvers. Many of these heuristics rely on an optimal LP solution, which may take a significant amount of time to find. In this paper, we address this issue by introducing a pre-root primal heuristic that does not require a previously found LP solution. This heuristic, named Shift-and-Propagate , applies domain propagation techniques to quickly drive a variable assignment towards feasibility. Computational experiments indicate that this heuristic is a powerful supplement to existing rounding and propagation heuristics.}, language = {en} } @inproceedings{GamrathMelchioriBertholdetal., author = {Gamrath, Gerald and Melchiori, Anna and Berthold, Timo and Gleixner, Ambros and Salvagnin, Domenico}, title = {Branching on Multi-aggregated Variables}, series = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015}, volume = {9075}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2015}, doi = {10.1007/978-3-319-18008-3_10}, pages = {141 -- 156}, abstract = {In mixed-integer programming, the branching rule is a key component to a fast convergence of the branch-and-bound algorithm. The most common strategy is to branch on simple disjunctions that split the domain of a single integer variable into two disjoint intervals. Multi-aggregation is a presolving step that replaces variables by an affine linear sum of other variables, thereby reducing the problem size. While this simplification typically improves the performance of MIP solvers, it also restricts the degree of freedom in variable-based branching rules. We present a novel branching scheme that tries to overcome the above drawback by considering general disjunctions defined by multi-aggregated variables in addition to the standard disjunctions based on single variables. This natural idea results in a hybrid between variable- and constraint-based branching rules. Our implementation within the constraint integer programming framework SCIP incorporates this into a full strong branching rule and reduces the number of branch-and-bound nodes on a general test set of publicly available benchmark instances. For a specific class of problems, we show that the solving time decreases significantly.}, language = {en} } @incollection{GamrathBertholdHeinzetal., author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-Based Primal Heuristics for Mixed Integer Programming}, series = {Optimization in the Real World}, volume = {13}, booktitle = {Optimization in the Real World}, publisher = {Springer Japan}, isbn = {978-4-431-55419-6}, doi = {10.1007/978-4-431-55420-2_3}, pages = {37 -- 53}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time.}, language = {en} } @article{GleixnerBertholdMuelleretal., author = {Gleixner, Ambros and Berthold, Timo and M{\"u}ller, Benjamin and Weltge, Stefan}, title = {Three Enhancements for Optimization-Based Bound Tightening}, series = {Journal of Global Optimization}, volume = {67}, journal = {Journal of Global Optimization}, number = {4}, doi = {10.1007/s10898-016-0450-4}, pages = {731 -- 757}, abstract = {Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17\% to 19\% on average. Most importantly, more instances can be solved when using OBBT.}, language = {en} } @inproceedings{BertholdFarmerHeinzetal., author = {Berthold, Timo and Farmer, James and Heinz, Stefan and Perregaard, Michael}, title = {Parallelization of the FICO Xpress-Optimizer}, series = {Mathematical Software - ICMS 2016, 5th International Conference Berlin, Germany, July 11-14, 2016 Proceedings}, booktitle = {Mathematical Software - ICMS 2016, 5th International Conference Berlin, Germany, July 11-14, 2016 Proceedings}, doi = {10.1007/978-3-319-42432-3_31}, pages = {251 -- 258}, language = {en} } @inproceedings{ShinanoBertholdHeinz, author = {Shinano, Yuji and Berthold, Timo and Heinz, Stefan}, title = {A First Implementation of ParaXpress: Combining Internal and External Parallelization to Solve MIPs on Supercomputers}, series = {Mathematical Software - ICMS 2016, 5th International Conference Berlin, Germany, July 11-14, 2016 Proceedings}, booktitle = {Mathematical Software - ICMS 2016, 5th International Conference Berlin, Germany, July 11-14, 2016 Proceedings}, doi = {10.1007/978-3-319-42432-3_38}, pages = {308 -- 316}, language = {en} } @misc{Berthold, author = {Berthold, Timo}, title = {Primal MINLP Heuristics in a nutshell}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42170}, abstract = {Primal heuristics are an important component of state-of-the-art codes for mixed integer nonlinear programming (MINLP). In this article we give a compact overview of primal heuristics for MINLP that have been suggested in the literature of recent years. We sketch the fundamental concepts of different classes of heuristics and discuss specific implementations. A brief computational experiment shows that primal heuristics play a key role in achieving feasibility and finding good primal bounds within a global MINLP solver.}, language = {en} } @article{BertholdGleixnerHeinzetal.2012, author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Vigerske, Stefan}, title = {Analyzing the computational impact of MIQCP solver components}, series = {Numerical Algebra, Control and Optimization}, volume = {2}, journal = {Numerical Algebra, Control and Optimization}, number = {4}, doi = {10.3934/naco.2012.2.739}, pages = {739 -- 748}, year = {2012}, abstract = {We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on a linear relaxation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.}, language = {en} } @inproceedings{BertholdGleixner2013, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover Branching}, series = {Experimental Algorithms, 12th International Symposium, SEA 2013, Rome, Italy, June 5-7, 2013, Proceedings}, volume = {7933}, booktitle = {Experimental Algorithms, 12th International Symposium, SEA 2013, Rome, Italy, June 5-7, 2013, Proceedings}, editor = {Bonifaci, Vincenzo and Demetrescu, Camil and Marchetti-Spaccamela, Alberto}, doi = {10.1007/978-3-642-38527-8_20}, pages = {212 -- 223}, year = {2013}, abstract = {In this paper, we present a new branching strategy for nonconvex MINLP that aims at driving the created subproblems towards linearity. It exploits the structure of a minimum cover of an MINLP, a smallest set of variables that, when fixed, render the remaining system linear: whenever possible, branching candidates in the cover are preferred. Unlike most branching strategies for MINLP, Undercover branching is not an extension of an existing MIP branching rule. It explicitly regards the nonlinearity of the problem while branching on integer variables with a fractional relaxation solution. Undercover branching can be naturally combined with any variable-based branching rule. We present computational results on a test set of general MINLPs from MINLPLib, using the new strategy in combination with reliability branching and pseudocost branching. The computational cost of Undercover branching itself proves negligible. While it turns out that it can influence the variable selection only on a smaller set of instances, for those that are affected, significant improvements in performance are achieved.}, language = {en} } @inproceedings{BertholdGleixnerHeinzetal.2012, author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法}, series = {Proceedings of the 24th RAMP symposium. The Operations Society of Japan, RAMP: Research Association of Mathematical Programming}, booktitle = {Proceedings of the 24th RAMP symposium. The Operations Society of Japan, RAMP: Research Association of Mathematical Programming}, pages = {165 -- 192}, year = {2012}, abstract = {この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.}, language = {ja} } @misc{BertholdHeinzVigerske, author = {Berthold, Timo and Heinz, Stefan and Vigerske, Stefan}, title = {Extending a CIP framework to solve MIQCPs}, series = {Mixed Integer Nonlinear Programming}, volume = {154}, journal = {Mixed Integer Nonlinear Programming}, editor = {Lee, Jon and Leyffer, Sven}, publisher = {Springer}, isbn = {978-1-4614-1927-3}, pages = {427 -- 444}, abstract = {This paper discusses how to build a solver for mixed integer quadratically constrained programs (MIQCPs) by extending a framework for constraint integer programming (CIP). The advantage of this approach is that we can utilize the full power of advanced MIP and CP technologies. In particular, this addresses the linear relaxation and the discrete components of the problem. For relaxation, we use an outer approximation generated by linearization of convex constraints and linear underestimation of nonconvex constraints. Further, we give an overview of the reformulation, separation, and propagation techniques that are used to handle the quadratic constraints efficiently. We implemented these methods in the branch-cut-and-price framework SCIP. Computational experiments indicates the potential of the approach.}, language = {en} } @misc{BertholdSalvagnin, author = {Berthold, Timo and Salvagnin, Domenico}, title = {Cloud branching}, series = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems}, volume = {7874}, journal = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems}, editor = {Gomes, Carla and Sellmann, Meinolf}, publisher = {Springer}, doi = {10.1007/978-3-642-38171-3_3}, pages = {28 -- 43}, abstract = {Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud) of the current LP relaxation. These strategies naturally extend state-of-the-art methods like strong branching, pseudocost branching, and their hybrids. We show that by exploiting dual degeneracy, and thus multiple alternative optimal solutions, it is possible to enhance traditional methods. We present preliminary computational results, applying the newly proposed strategy to full strong branching, which is known to be the MIP branching rule leading to the fewest number of search nodes. It turns out that cloud branching can reduce the mean running time by up to 30\% on standard test sets.}, language = {en} } @article{Berthold, author = {Berthold, Timo}, title = {Measuring the impact of primal heuristics}, series = {Operations Research Letters}, volume = {41}, journal = {Operations Research Letters}, number = {6}, doi = {10.1016/j.orl.2013.08.007}, pages = {611 -- 614}, abstract = {In modern MIP solvers, primal heuristics play a major role in finding and improving feasible solutions early in the solution process. However, classical performance measures such as time to optimality or number of branch-and-bound nodes reflect the impact of primal heuristics on the overall solving process badly. This article discusses the question of how to evaluate the effect of primal heuristics. Therefore, we introduce a new performance measure, the "primal integral" which depends on the quality of solutions found during the solving process as well as on the points in time when they are found. Our computational results reveal that heuristics improve the performance of MIP solvers in terms of the primal bound by around 80\%. Further, we compare five state-of-the-art MIP solvers w.r.t. the newly proposed measure.}, language = {en} } @inproceedings{BertholdHeinzPfetschetal., author = {Berthold, Timo and Heinz, Stefan and Pfetsch, Marc and Vigerske, Stefan}, title = {Large Neighborhood Search beyond MIP}, series = {Proceedings of the 9th Metaheuristics International Conference (MIC 2011)}, booktitle = {Proceedings of the 9th Metaheuristics International Conference (MIC 2011)}, isbn = {978-88-900984-3-7}, pages = {51 -- 60}, abstract = {Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics.}, language = {en} } @inproceedings{BertholdHeinzSchulz, author = {Berthold, Timo and Heinz, Stefan and Schulz, Jens}, title = {An approximative Criterion for the Potential of Energetic Reasoning}, series = {Theory and Practice of Algorithms in (Computer) Systems}, volume = {6595}, booktitle = {Theory and Practice of Algorithms in (Computer) Systems}, pages = {229 -- 239}, language = {en} } @inproceedings{BertholdGleixner2010, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover - a primal heuristic for MINLP based on sub-MIPs generated by set covering}, series = {Proceedings of the European Workshop on Mixed Integer Nonlinear Programming, April 12-16, 2010, Marseilles, France}, booktitle = {Proceedings of the European Workshop on Mixed Integer Nonlinear Programming, April 12-16, 2010, Marseilles, France}, editor = {Bonami, Pierre and Liberti, Leo and Miller, Andrew J. and Sartenaer, Annick}, pages = {103 -- 112}, year = {2010}, abstract = {We present Undercover, a primal heuristic for mixed-integer nonlinear programming (MINLP). The heuristic constructs a mixed-integer linear subproblem (sub-MIP) of a given MINLP by fixing a subset of the variables. We solve a set covering problem to identify a minimal set of variables which need to be fixed in order to linearise each constraint. Subsequently, these variables are fixed to approximate values, e.g. obtained from a linear outer approximation. The resulting sub-MIP is solved by a mixed-integer linear programming solver. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. Although general in nature, the heuristic seems most promising for mixed-integer quadratically constrained programmes (MIQCPs). We present computational results on a general test set of MIQCPs selected from the MINLPLib.}, language = {en} } @misc{ArnoldBertholdHeinzetal., author = {Arnold, Thomas and Berthold, Timo and Heinz, Stefan and Vigerske, Stefan and Henrion, Ren{\´e} and Gr{\"o}tschel, Martin and Koch, Thorsten and Tischendorf, Caren and R{\"o}misch, Werner}, title = {A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs}, issn = {1438-0064}, doi = {10.4171/137}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49947}, abstract = {Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de}, language = {en} } @misc{RalphsShinanoBertholdetal., author = {Ralphs, Ted and Shinano, Yuji and Berthold, Timo and Koch, Thorsten}, title = {Parallel Solvers for Mixed Integer Linear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62239}, abstract = {In this article, we introduce parallel mixed integer linear programming (MILP) solvers. MILP solving algorithms have been improved tremendously in the last two decades. Currently, commercial MILP solvers are known as a strong optimization tool. Parallel MILP solver development has started in 1990s. However, since the improvements of solving algorithms have much impact to solve MILP problems than application of parallel computing, there were not many visible successes. With the spread of multi-core CPUs, current state-of-the-art MILP solvers have parallel implementations and researches to apply parallelism in the solving algorithm also getting popular. We summarize current existing parallel MILP solver architectures.}, language = {en} } @article{KochAchterbergAndersenetal.2011, author = {Koch, Thorsten and Achterberg, Tobias and Andersen, Erling and Bastert, Oliver and Berthold, Timo and Bixby, Robert E. and Danna, Emilie and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Lodi, Andrea and Mittelmann, Hans and Ralphs, Ted and Salvagnin, Domenico and Steffy, Daniel and Wolter, Kati}, title = {MIPLIB 2010}, series = {Mathematical Programming Computation}, volume = {3}, journal = {Mathematical Programming Computation}, number = {2}, doi = {10.1007/s12532-011-0025-9}, pages = {103 -- 163}, year = {2011}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal.2012, author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten}, title = {ParaSCIP: a parallel extension of SCIP}, series = {Competence in High Performance Computing 2010}, booktitle = {Competence in High Performance Computing 2010}, editor = {Bischof, Christian and Hegering, Heinz-Gerd and Nagel, Wolfgang and Wittum, Gabriel}, publisher = {Springer}, doi = {10.1007/978-3-642-24025-6_12}, pages = {135 -- 148}, year = {2012}, language = {en} } @inproceedings{AchterbergBertholdKochetal.2008, author = {Achterberg, Tobias and Berthold, Timo and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: A New Approach to Integrate CP and MIP}, series = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008}, volume = {5015}, booktitle = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008}, editor = {Perron, Laurent and Trick, Michael}, publisher = {Springer}, doi = {10.1007/978-3-540-68155-7_4}, pages = {6 -- 20}, year = {2008}, language = {en} } @misc{BertholdGleixnerHeinzetal., author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15598}, abstract = {この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.}, language = {ja} } @misc{BertholdGamrathGleixneretal., author = {Berthold, Timo and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15654}, abstract = {This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development.}, language = {en} } @article{AchterbergBerthold2007, author = {Achterberg, Tobias and Berthold, Timo}, title = {Improving the Feasibility Pump}, series = {Discrete Optimization}, volume = {Special Issue 4}, journal = {Discrete Optimization}, number = {1}, pages = {77 -- 86}, year = {2007}, language = {en} } @misc{Berthold2006, type = {Master Thesis}, author = {Berthold, Timo}, title = {Primal Heuristics for Mixed Integer Programs}, year = {2006}, language = {en} } @inproceedings{BertholdFeydyStuckey2010, author = {Berthold, Timo and Feydy, Thibaut and Stuckey, Peter}, title = {Rapid Learning for Binary Programs}, series = {Proc. of CPAIOR 2010}, volume = {6140}, booktitle = {Proc. of CPAIOR 2010}, editor = {Lodi, Andrea and Milano, Michela and Toth, Paolo}, publisher = {Springer}, pages = {51 -- 55}, year = {2010}, language = {en} } @inproceedings{BertholdHeinzLuebbeckeetal.2010, author = {Berthold, Timo and Heinz, Stefan and L{\"u}bbecke, Marco and M{\"o}hring, Rolf and Schulz, Jens}, title = {A Constraint Integer Programming Approach for Resource-Constrained Project Scheduling}, series = {Proc. of CPAIOR 2010}, volume = {6140}, booktitle = {Proc. of CPAIOR 2010}, editor = {Lodi, Andrea and Milano, Michela and Toth, Paolo}, publisher = {Springer}, pages = {313 -- 317}, year = {2010}, language = {en} } @inproceedings{BertholdHeinzPfetsch2009, author = {Berthold, Timo and Heinz, Stefan and Pfetsch, Marc}, title = {Nonlinear pseudo-Boolean optimization}, series = {Theory and Applications of Satisfiability Testing - SAT 2009}, volume = {5584}, booktitle = {Theory and Applications of Satisfiability Testing - SAT 2009}, editor = {Kullmann, Oliver}, publisher = {Springer}, pages = {441 -- 446}, year = {2009}, language = {en} } @inproceedings{BertholdPfetsch2009, author = {Berthold, Timo and Pfetsch, Marc}, title = {Detecting Orbitopal Symmetries}, series = {Operations Research Proceedings 2008}, booktitle = {Operations Research Proceedings 2008}, editor = {Fleischmann, Bernhard and Borgwardt, Karl and Klein, Robert and Tuma, Axel}, publisher = {Springer-Verlag}, pages = {433 -- 438}, year = {2009}, language = {en} } @inproceedings{AchterbergBerthold2009, author = {Achterberg, Tobias and Berthold, Timo}, title = {Hybrid Branching}, series = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009}, volume = {5547}, booktitle = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009}, editor = {van Hoeve, Willem and Hooker, John}, publisher = {Springer}, pages = {309 -- 311}, year = {2009}, language = {en} } @inproceedings{Berthold2008, author = {Berthold, Timo}, title = {Heuristics of the Branch-Cut-and-Price-Framework SCIP}, series = {Operations Research Proceedings 2007}, booktitle = {Operations Research Proceedings 2007}, editor = {Kalcsics, J{\"o}rg and Nickel, Stefan}, publisher = {Springer-Verlag}, pages = {31 -- 36}, year = {2008}, language = {en} } @article{Berthold2008, author = {Berthold, Timo}, title = {Heuristiken im Branch-and-Cut-Framework SCIP}, series = {OR News}, journal = {OR News}, number = {32}, pages = {24 -- 25}, year = {2008}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, series = {Proc. of 30th IEEE International Parallel \& Distributed Processing Symposium}, booktitle = {Proc. of 30th IEEE International Parallel \& Distributed Processing Symposium}, doi = {10.1109/IPDPS.2016.56}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{GamrathMelchioriBertholdetal., author = {Gamrath, Gerald and Melchiori, Anna and Berthold, Timo and Gleixner, Ambros and Salvagnin, Domenico}, title = {Branching on multi-aggregated variables}, issn = {1438-0064}, doi = {10.1007/978-3-319-18008-3_10}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53829}, abstract = {In mixed-integer programming, the branching rule is a key component to a fast convergence of the branch-and-bound algorithm. The most common strategy is to branch on simple disjunctions that split the domain of a single integer variable into two disjoint intervals. Multi-aggregation is a presolving step that replaces variables by an affine linear sum of other variables, thereby reducing the problem size. While this simplification typically improves the performance of MIP solvers, it also restricts the degree of freedom in variable-based branching rules. We present a novel branching scheme that tries to overcome the above drawback by considering general disjunctions defined by multi-aggregated variables in addition to the standard disjunctions based on single variables. This natural idea results in a hybrid between variable- and constraint-based branching rules. Our implementation within the constraint integer programming framework SCIP incorporates this into a full strong branching rule and reduces the number of branch-and-bound nodes on a general test set of publicly available benchmark instances. For a specific class of problems, we show that the solving time decreases significantly.}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Hard MIPLIP2003 Problems with ParaSCIP on Supercomputers: An Update}, series = {IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel \& Distributed Processing Symposium Workshops}, booktitle = {IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel \& Distributed Processing Symposium Workshops}, editor = {IEEE,}, publisher = {IEEE Computer Society}, address = {Washington, DC, USA}, isbn = {978-1-4799-4117-9}, doi = {10.1109/IPDPSW.2014.174}, pages = {1552 -- 1561}, language = {en} } @phdthesis{Berthold, author = {Berthold, Timo}, title = {Heuristic algorithms in global MINLP solvers}, publisher = {Dr. Hut Verlag}, isbn = {978-3-8439-1931-9}, pages = {366}, abstract = {In the literature for mixed integer programming, heuristic algorithms (particularly primal heuristics) are often considered as stand-alone procedures; in that context, heuristics are treated as an alternative to solving a problem to proven optimality. This conceals the fact that heuristic algorithms are a fundamental component of state-of-the-art global solvers for mixed integer linear programming (MIP) and mixed integer nonlinear programming (MINLP). In the present thesis, we focus on this latter aspect; we study heuristic algorithms that are tightly integrated within global MINLP solvers and analyze their impact on the overall solution process. Our contributions comprise generalizations of primal heuristics for MIP towards MINLP as well as novel ideas for MINLP primal heuristics and for heuristic algorithms to take branching decisions and to collect global information in MIP. These are: - Shift-and-Propagate, a novel propagation heuristic for MIP that does not require the solution to an LP relaxation, - a generic way to generalize large neighborhood search (LNS) heuristics from MIP to MINLP, - an Objective Feasibility Pump heuristic for nonconvex MINLP that uses second-order information and a dynamic selection of rounding procedures, - RENS, an LNS start heuristic for MINLP that optimizes over the set of feasible roundings of an LP solution, - Undercover, an LNS start heuristic for MINLP that solves a largest sub-MIP of a given MINLP, - Rapid Learning, a heuristic algorithm to generate globally valid conflict constraints for MIPs, - Cloud Branching, a heuristic algorithm that exploits dual degeneracy to reduce the number of candidates for branching variable selection. Additionally, we propose a new performance measure, the primal integral, that captures the benefits of primal heuristics better than traditional methods. In our computational study, we compare the performance of the MIP and MINLP solver SCIP with and without primal heuristics on six test sets with altogether 983 instances from academic and industrial sources, including our project partners ForNe, SAP, and Siemens. We observe that heuristics improve the solver performance regarding all measures that we used - by different orders of magnitude. We further see that the harder a problem is to solve to global optimality, the more important the deployment of primal heuristics becomes. The algorithms presented in this thesis are available in source code as part of the solver SCIP, of which the author has been a main developer for the last years. Methods described in this thesis have also been re-implemented within several commercial and noncommercial MIP and MINLP software packages, including Bonmin, CBC, Cplex, Gams, Sulum, and Xpress.}, language = {en} } @misc{GamrathBertholdHeinzetal., author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-based primal heuristics for mixed integer programming}, issn = {1438-0064}, doi = {http://dx.doi.org/10.1007/978-4-431-55420-2_3}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55518}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time.}, language = {en} } @article{GleixnerHendelGamrathetal., author = {Gleixner, Ambros and Hendel, Gregor and Gamrath, Gerald and Achterberg, Tobias and Bastubbe, Michael and Berthold, Timo and Christophel, Philipp M. and Jarck, Kati and Koch, Thorsten and Linderoth, Jeff and L{\"u}bbecke, Marco and Mittelmann, Hans and Ozyurt, Derya and Ralphs, Ted and Salvagnin, Domenico and Shinano, Yuji}, title = {MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library}, series = {Mathematical Programming Computation}, volume = {13}, journal = {Mathematical Programming Computation}, number = {3}, doi = {10.1007/s12532-020-00194-3}, pages = {443 -- 490}, abstract = {We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of over 5,000 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, the compilation of these sets was done using a data-driven selection process supported by the solution of a sequence of mixed integer optimization problems, which encoded requirements on diversity and balancedness with respect to instance features and performance data.}, language = {en} } @article{CsizmadiaBerthold, author = {Csizmadia, Zsolt and Berthold, Timo}, title = {The confined primal integral: a measure to benchmark heuristic MINLP solvers against global MINLP solvers}, series = {Mathematical Programming}, journal = {Mathematical Programming}, doi = {10.1007/s10107-020-01547-5}, abstract = {It is a challenging task to fairly compare local solvers and heuristics against each other and against global solvers. How does one weigh a faster termination time against a better quality of the found solution? In this paper, we introduce the confined primal integral, a new performance measure that rewards a balance of speed and solution quality. It emphasizes the early part of the solution process by using an exponential decay. Thereby, it avoids that the order of solvers can be inverted by choosing an arbitrarily large time limit. We provide a closed analytic formula to compute the confined primal integral a posteriori and an incremental update formula to compute it during the run of an algorithm. For the latter, we show that we can drop one of the main assumptions of the primal integral, namely the knowledge of a fixed reference solution to compare against. Furthermore, we prove that the confined primal integral is a transitive measure when comparing local solves with different final solution values. Finally, we present a computational experiment where we compare a local MINLP solver that uses certain classes of cutting planes against a solver that does not. Both versions show very different tendencies w.r.t. average running time and solution quality, and we use the confined primal integral to argue which of the two is the preferred setting.}, language = {en} } @article{GamrathBertholdSalvagnin, author = {Gamrath, Gerald and Berthold, Timo and Salvagnin, Domenico}, title = {An exploratory computational analysis of dual degeneracy in mixed-integer programming}, series = {EURO Journal on Computational Optimization}, journal = {EURO Journal on Computational Optimization}, number = {8}, doi = {10.1007/s13675-020-00130-z}, pages = {241 -- 246}, abstract = {Dual degeneracy, i.e., the presence of multiple optimal bases to a linear programming (LP) problem, heavily affects the solution process of mixed integer programming (MIP) solvers. Different optimal bases lead to different cuts being generated, different branching decisions being taken and different solutions being found by primal heuristics. Nevertheless, only a few methods have been published that either avoid or exploit dual degeneracy. The aim of the present paper is to conduct a thorough computational study on the presence of dual degeneracy for the instances of well-known public MIP instance collections. How many instances are affected by dual degeneracy? How degenerate are the affected models? How does branching affect degeneracy: Does it increase or decrease by fixing variables? Can we identify different types of degenerate MIPs? As a tool to answer these questions, we introduce a new measure for dual degeneracy: the variable-constraint ratio of the optimal face. It provides an estimate for the likelihood that a basic variable can be pivoted out of the basis. Furthermore, we study how the so-called cloud intervals—the projections of the optimal face of the LP relaxations onto the individual variables—evolve during tree search and the implications for reducing the set of branching candidates.}, language = {en} } @article{BertholdFarmerHeinzetal., author = {Berthold, Timo and Farmer, James and Heinz, Stefan and Perregaard, Michael}, title = {Parallelization of the FICO Xpress Optimizer}, series = {Optimization Methods and Software}, volume = {33}, journal = {Optimization Methods and Software}, number = {3}, doi = {10.1080/10556788.2017.1333612}, pages = {518 -- 529}, abstract = {Computing hardware has mostly thrashed out the physical limits for speeding up individual computing cores. Consequently, the main line of progress for new hardware is growing the number of computing cores within a single CPU. This makes the study of efficient parallelization schemes for computation-intensive algorithms more and more important. A natural precondition to achieving reasonable speedups from parallelization is maintaining a high workload of the available computational resources. At the same time, reproducibility and reliability are key requirements for software that is used in industrial applications. In this paper, we present the new parallelization concept for the state-of-the-art MIP solver FICO Xpress-Optimizer. MIP solvers like Xpress are expected to be deterministic. This inevitably results in synchronization latencies which render the goal of a satisfying workload a challenge in itself. We address this challenge by following a partial information approach and separating the concepts of simultaneous tasks and independent threads from each other. Our computational results indicate that this leads to a much higher CPU workload and thereby to an improved, almost linear, scaling on modern high-performance CPUs. As an added value, the solution path that Xpress takes is not only deterministic in a fixed environment, but also, to a certain extent, thread-independent. This paper is an extended version of Berthold et al. [Parallelization of the FICO Xpress-Optimizer, in Mathematical Software - ICMS 2016: 5th International Conference, G.-M. Greuel, T. Koch, P. Paule, and A. Sommere, eds., Springer International Publishing, Berlin, 2016, pp. 251-258] containing more detailed technical descriptions, illustrative examples and updated computational results.}, language = {en} } @misc{BertholdGamrathSalvagnin, author = {Berthold, Timo and Gamrath, Gerald and Salvagnin, Domenico}, title = {Exploiting Dual Degeneracy in Branching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73028}, abstract = {Branch-and-bound methods for mixed-integer programming (MIP) are traditionally based on solving a linear programming (LP) relaxation and branching on a variable which takes a fractional value in the (single) computed relaxation optimum. In this paper, we study branching strategies for mixed-integer programs that exploit the knowledge of multiple alternative optimal solutions (a cloud ) of the current LP relaxation. These strategies naturally extend common methods like most infeasible branching, strong branching, pseudocost branching, and their hybrids, but we also propose a novel branching rule called cloud diameter branching. We show that dual degeneracy, a requirement for alternative LP optima, is present for many instances from common MIP test sets. Computational experiments show significant improvements in the quality of branching decisions as well as reduced branching effort when using our modifications of existing branching rules. We discuss different ways to generate a cloud of solutions and present extensive computational results showing that through a careful implementation, cloud modifications can speed up full strong branching by more than 10 \% on standard test sets. Additionally, by exploiting degeneracy, we are also able to improve the state-of-the-art hybrid branching rule and reduce the solving time on affected instances by almost 20 \% on average.}, language = {en} } @inproceedings{BertholdGrimmReutheretal., author = {Berthold, Timo and Grimm, Boris and Reuther, Markus and Schade, Stanley and Schlechte, Thomas}, title = {Strategic Planning of Rolling Stock Rotations for Public Tenders}, series = {Proceedings of the 8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019}, volume = {Link{\"o}ping Electronic Conference Proceedings}, booktitle = {Proceedings of the 8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019}, number = {069}, publisher = {Link{\"o}ping University Electronic Press, Link{\"o}pings universitet}, isbn = {978-91-7929-992-7}, issn = {1650-3686}, pages = {148 -- 159}, abstract = {Since railway companies have to apply for long-term public contracts to operate railway lines in public tenders, the question how they can estimate the operating cost for long-term periods adequately arises naturally. We consider a rolling stock rotation problem for a time period of ten years, which is based on a real world instance provided by an industry partner. We use a two stage approach for the cost estimation of the required rolling stock. In the first stage, we determine a weekly rotation plan. In the second stage, we roll out this weekly rotation plan for a longer time period and incorporate scheduled maintenance treatments. We present a heuristic approach and a mixed integer programming model to implement the process of the second stage. Finally, we discuss computational results for a real world tendering scenario.}, language = {en} } @inproceedings{BertholdPerregaardMeszaros, author = {Berthold, Timo and Perregaard, Michael and M{\´e}sz{\´a}ros, Csaba}, title = {Four Good Reasons to Use an Interior Point Solver Within a MIP Solver}, series = {Kliewer N., Ehmke J., Bornd{\"o}rfer R. (eds) Operations Research Proceedings 2017}, booktitle = {Kliewer N., Ehmke J., Bornd{\"o}rfer R. (eds) Operations Research Proceedings 2017}, doi = {10.1007/978-3-319-89920-6_22}, pages = {159 -- 164}, abstract = {"Interior point algorithms are a good choice for solving pure LPs or QPs, but when you solve MIPs, all you need is a dual simplex" This is the common conception which disregards that an interior point solution provides some unique structural insight into the problem at hand. In this paper, we will discuss some of the benefits that an interior point solver brings to the solution of difficult MIPs within FICO Xpress. This includes many different components of the MIP solver such as branching variable selection, primal heuristics, preprocessing, and of course the solution of the LP relaxation.}, language = {en} } @misc{RalphsShinanoBertholdetal., author = {Ralphs, Ted and Shinano, Yuji and Berthold, Timo and Koch, Thorsten}, title = {Parallel Solvers for Mixed Integer Linear Optimization}, series = {Handbook of Parallel Constraint Reasoning}, journal = {Handbook of Parallel Constraint Reasoning}, editor = {Hamadi, Youssef}, publisher = {Springer Nature}, doi = {10.1007/978-3-319-63516-3_8}, pages = {283 -- 336}, language = {en} } @article{GamrathBertholdHeinzetal., author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-driven fix-and-propagate heuristics for mixed integer programming}, series = {Mathematical Programming Computation}, volume = {11}, journal = {Mathematical Programming Computation}, number = {4}, publisher = {Springer}, address = {Berlin Heidelberg}, doi = {10.1007/s12532-019-00159-1}, pages = {675 -- 702}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early and help to reduce the time needed to prove optimality. In this paper, we present a scheme for start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved first as an LP, and then as an auxiliary MIP if the rounded LP solution does not provide a feasible solution already. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about 60 \% of the instances and by this, help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.}, language = {en} } @article{ShinanoBertholdHeinz, author = {Shinano, Yuji and Berthold, Timo and Heinz, Stefan}, title = {ParaXpress: An Experimental Extension of the FICO Xpress-Optimizer to Solve Hard MIPs on Supercomputers}, series = {Optimization Methods \& Software}, volume = {33}, journal = {Optimization Methods \& Software}, number = {3}, doi = {10.1080/10556788.2018.1428602}, pages = {530 -- 539}, abstract = {The Ubiquity Generator (UG) is a general framework for the external parallelization of mixed integer programming (MIP) solvers. In this paper, we present ParaXpress, a distributed memory parallelization of the powerful commercial MIP solver FICO Xpress. Besides sheer performance, an important feature of Xpress is that it provides an internal parallelization for shared memory systems. When aiming for a best possible performance of ParaXpress on a supercomputer, the question arises how to balance the internal Xpress parallelization and the external parallelization by UG against each other. We provide computational experiments to address this question and we show computational results for running ParaXpress on a Top500 supercomputer, using up to 43,344 cores in parallel.}, language = {en} } @article{BertholdKochShinano2021, author = {Berthold, Timo and Koch, Thorsten and Shinano, Yuji}, title = {MILP. Try. Repeat.}, series = {Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021}, volume = {2}, journal = {Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021}, year = {2021}, language = {en} } @misc{KochBertholdPedersenetal., author = {Koch, Thorsten and Berthold, Timo and Pedersen, Jaap and Vanaret, Charlie}, title = {Progress in Mathematical Programming Solvers from 2001 to 2020}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82779}, abstract = {This study investigates the progress made in LP and MILP solver performance during the last two decades by comparing the solver software from the beginning of the millennium with the codes available today. On average, we found out that for solving LP/MILP, computer hardware got about 20 times faster, and the algorithms improved by a factor of about nine for LP and around 50 for MILP, which gives a total speed-up of about 180 and 1,000 times, respectively. However, these numbers have a very high variance and they considerably underestimate the progress made on the algorithmic side: many problem instances can nowadays be solved within seconds, which the old codes are not able to solve within any reasonable time.}, language = {en} } @misc{BertholdFeydyStuckey, author = {Berthold, Timo and Feydy, Thibaut and Stuckey, Peter}, title = {Rapid Learning for Binary Programs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11663}, number = {10-04}, abstract = {Learning during search allows solvers for discrete optimization problems to remember parts of the search that they have already performed and avoid revisiting redundant parts. Learning approaches pioneered by the SAT and CP communities have been successfully incorporated into the SCIP constraint integer programming platform. In this paper we show that performing a heuristic constraint programming search during root node processing of a binary program can rapidly learn useful nogoods, bound changes, primal solutions, and branching statistics that improve the remaining IP search.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving hard MIPLIB2003 problems with ParaSCIP on Supercomputers: An update}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42888}, abstract = {Contemporary supercomputers can easily provide years of CPU time per wall-clock hour. One challenge of today's software development is how to harness this wast computing power in order to solve really hard mixed integer programming instances. In 2010, two out of six open MIPLIB2003 instances could be solved by ParaSCIP in more than ten consecutive runs, restarting from checkpointing files. The contribution of this paper is threefold: For the first time, we present computational results of single runs for those two instances. Secondly, we provide new improved upper and lower bounds for all of the remaining four open MIPLIB2003 instances. Finally, we explain which new developments led to these results and discuss the current progress of ParaSCIP. Experiments were conducted on HLRNII, on HLRN III, and on the Titan supercomputer, using up to 35,200 cores.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78393}, abstract = {Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper, we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{Berthold, author = {Berthold, Timo}, title = {RENS - the optimal rounding}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15203}, abstract = {This article introduces RENS, the relaxation enforced neighborhood search, a large neighborhood search algorithm for mixed integer nonlinear programming (MINLP) that uses a sub-MINLP to explore the set of feasible roundings of an optimal solution x' of a linear or nonlinear relaxation. The sub-MINLP is constructed by fixing integer variables x_j with x'_j in Z and bounding the remaining integer variables to x_j in {floor(x'_j), ceil(x'_j)}. We describe two different applications of RENS: as a standalone algorithm to compute an optimal rounding of the given starting solution and as a primal heuristic inside a complete MINLP solver. We use the former to compare different kinds of relaxations and the impact of cutting planes on the roundability of the corresponding optimal solutions. We further utilize RENS to analyze the performance of three rounding heuristics implemented in the branch-cut-and-price framework SCIP. Finally, we study the impact of RENS when it is applied as a primal heuristic inside SCIP. All experiments were performed on three publically available test sets of mixed integer linear programs (MIPs), mixed integer quadratically constrained programs (MIQCPs), and MINLPs, using solely software which is available in source code. It turns out that for these problem classes 60\% to 70\% of the instances have roundable relaxation optima and that the success rate of RENS does not depend on the percentage of fractional variables. Last but not least, RENS applied as primal heuristic complements nicely with existing root node heuristics in SCIP and improves the overall performance.}, language = {en} } @misc{BertholdHendelKoch, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {The Three Phases of MIP Solving}, issn = {1438-0064}, doi = {10.1080/10556788.2017.1392519}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61607}, abstract = {Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, issn = {1438-0064}, doi = {10.1109/IPDPS.2016.56}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56404}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{GleixnerBertholdMuelleretal., author = {Gleixner, Ambros and Berthold, Timo and M{\"u}ller, Benjamin and Weltge, Stefan}, title = {Three Enhancements for Optimization-Based Bound Tightening}, issn = {1438-0064}, doi = {10.1007/s10898-016-0450-4}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57803}, abstract = {Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17\% to 19\% on average. Most importantly, more instances can be solved when using OBBT.}, language = {en} } @misc{BertholdGleixner, author = {Berthold, Timo and Gleixner, Ambros}, title = {Undercover - a primal heuristic for MINLP based on sub-MIPs generated by set covering}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11632}, number = {09-40}, abstract = {We present Undercover, a primal heuristic for mixed-integer nonlinear programming (MINLP). The heuristic constructs a mixed-integer linear subproblem (sub-MIP) of a given MINLP by fixing a subset of the variables. We solve a set covering problem to identify a minimal set of variables which need to be fixed in order to linearise each constraint. Subsequently, these variables are fixed to approximate values, e.g. obtained from a linear outer approximation. The resulting sub-MIP is solved by a mixed-integer linear programming solver. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. Although general in nature, the heuristic seems most promising for mixed-integer quadratically constrained programmes (MIQCPs). We present computational results on a general test set of MIQCPs selected from the MINLPLib.}, language = {en} } @misc{BertholdGleixnerHeinzetal., author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Vigerske, Stefan}, title = {On the computational impact of MIQCP solver components}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11998}, number = {11-01}, abstract = {We provide a computational study of the performance of a state-of-the-art solver for nonconvex mixed-integer quadratically constrained programs (MIQCPs). Since successful general-purpose solvers for large problem classes necessarily comprise a variety of algorithmic techniques, we focus especially on the impact of the individual solver components. The solver SCIP used for the experiments implements a branch-and-cut algorithm based on linear outer approximation to solve MIQCPs to global optimality. Our analysis is based on a set of 86 publicly available test instances.}, language = {en} } @misc{BertholdMexiSalvagnin, author = {Berthold, Timo and Mexi, Gioni and Salvagnin, Domenico}, title = {Using Multiple Reference Vectors and Objective Scaling in the Feasibility Pump}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88513}, abstract = {The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate the usage of multiple reference vectors in all stages of the FP algorithm. In particular, we use LP-feasible vectors obtained during the main loop to tighten the variable domains before entering the computationally expensive enumeration stage. Moreover, we consider multiple integer reference vectors to explore further optimizing directions and introduce alternative objective scaling terms to balance the contributions of the distance functions and the original MIP objective. Our computational experiments demonstrate that the new method can improve performance on general MIP test sets. In detail, our modifications provide a 29.3\% solution quality improvement and 4.0\% running time improvement in an embedded setting, needing 16.0\% fewer iterations over a large test set of MIP instances. In addition, the method's success rate increases considerably within the first few iterations. In a standalone setting, we also observe a moderate performance improvement, which makes our version of FP suitable for the two main use-cases of the algorithm.}, language = {en} } @article{KochBertholdPedersenetal., author = {Koch, Thorsten and Berthold, Timo and Pedersen, Jaap and Vanaret, Charlie}, title = {Progress in mathematical programming solvers from 2001 to 2020}, series = {EURO Journal on Computational Optimization}, volume = {10}, journal = {EURO Journal on Computational Optimization}, doi = {10.1016/j.ejco.2022.100031}, pages = {100031}, abstract = {This study investigates the progress made in lp and milp solver performance during the last two decades by comparing the solver software from the beginning of the millennium with the codes available today. On average, we found out that for solving lp/milp, computer hardware got about 20 times faster, and the algorithms improved by a factor of about nine for lp and around 50 for milp, which gives a total speed-up of about 180 and 1,000 times, respectively. However, these numbers have a very high variance and they considerably underestimate the progress made on the algorithmic side: many problem instances can nowadays be solved within seconds, which the old codes are not able to solve within any reasonable time.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Vigerske, Stefan and Winkler, Michael}, title = {制約整数計画ソルバ SCIP の並列化}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18130}, abstract = {制約整数計画(CIP: Constraint Integer Programming)は,制約プログラミング(CP: Constraint Programming),混合整数計画(MIP: Mixed Integer Programming), 充足可能性問題(SAT: Satisfiability Problems)の研究分野におけるモデリング技術と解法を統合している.その結果,制約整数計画は,広いクラスの最適化問題を扱うことができる.SCIP (Solving Constraint Integer Programs)は,CIPを解くソルバとして実装され,Zuse Institute Berlin (ZIB)の研究者を中心として継続的に拡張が続けられている.本論文では,著者らによって開発されたSCIP に対する2種類の並列化拡張を紹介する. 一つは,複数計算ノード間で大規模に並列動作するParaSCIP である. もう一つは,複数コアと共有メモリを持つ1台の計算機上で(スレッド)並列で動作するFiberSCIP である. ParaSCIP は,HLRN IIスーパーコンピュータ上で, 一つのインスタンスを解くために最大7,168 コアを利用した動作実績がある.また,統計数理研究所のFujitsu PRIMERGY RX200S5上でも,最大512コアを利用した動作実績がある.統計数理研究所のFujitsu PRIMERGY RX200S5上 では,これまでに最適解が得られていなかったMIPLIB2010のインスタンスであるdg012142に最適解を与えた.}, language = {ja} } @article{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Vigerske, Stefan and Winkler, Michael}, title = {制約整数計画ソルバ SCIP の並列化}, series = {統計数理}, volume = {61}, journal = {統計数理}, number = {1}, pages = {47 -- 78}, abstract = {制約整数計画(CIP: Constraint Integer Programs)は,制約プログラミング(CP: Constraint Programming),混合整数計画(MIP: Mixed Integer Programming),充足可能性問題(SAT: Satisfability Problem)の研究分野におけるモデリング技術と解法を統合している.その結果,制約整数計画は,広いクラスの最適化問題を扱うことができる.SCIP(Solving Constraint Integer Programs)は,CIP を解くソルバとして実装され,Zuse Institute Berlin(ZIB)の研究者を中心として継続的に拡張が続けられている.本論文では,著者らによって開発された SCIP に対する2 種類の並列化拡張を紹介する.一つは,複数計算ノード間で大規模に並列動作する ParaSCIPである.もう一つは,複数コアと共有メモリを持つ 1 台の計算機上で(スレッド)並列で動作する FiberSCIP である.ParaSCIP は,HLRN II スーパーコンピュータ上で,一つのインスタンスを解くために最大 7,168 コアを利用した動作実績がある.また,統計数理研究所の Fujitsu PRIMERGY RX200S5 上でも,最大 512 コアを利用した動作実績がある.統計数理研究所のFujitsu PRIMERGY RX200S5 上では,これまでに最適解が得られていなかった MIPLIB2010のインスタンスである dg012142 に最適解を与えた.}, language = {ja} } @article{BertholdMexiSalvagnin2022, author = {Berthold, Timo and Mexi, Gioni and Salvagnin, Domenico}, title = {Using Multiple Reference Vectors and Objective Scaling in the Feasibility Pump}, series = {EURO Journal on Computational Optimization}, volume = {11}, journal = {EURO Journal on Computational Optimization}, doi = {10.1016/j.ejco.2023.100066}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-87392}, year = {2022}, abstract = {The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate the usage of multiple reference vectors in all stages of the FP algorithm. In particular, we use LP-feasible vectors obtained during the main loop to tighten the variable domains before entering the computationally expensive enumeration stage. Moreover, we consider multiple integer reference vectors to explore further optimizing directions and introduce alternative objective scaling terms to balance the contributions of the distance functions and the original MIP objective. Our computational experiments demonstrate that the new method can improve performance on general MIP test sets. In detail, our modifications provide a 29.3\% solution quality improvement and 4.0\% running time improvement in an embedded setting, needing 16.0\% fewer iterations over a large test set of MIP instances. In addition, the method's success rate increases considerably within the first few iterations. In a standalone setting, we also observe a moderate performance improvement, which makes our version of FP suitable for the two main use-cases of the algorithm.}, language = {en} } @misc{WitzigBertholdHeinz, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Experiments with Conflict Analysis in Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/978-3-319-59776-8_17}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61087}, abstract = {The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.}, language = {en} } @inproceedings{WitzigBertholdHeinz, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Experiments with Conflict Analysis in Mixed Integer Programming}, series = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017}, volume = {10335}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017}, publisher = {Springer}, doi = {10.1007/978-3-319-59776-8_17}, pages = {211 -- 222}, abstract = {The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.}, language = {en} } @article{WitzigBerthold, author = {Witzig, Jakob and Berthold, Timo}, title = {Conflict Analysis for MINLP}, series = {INFORMS Journal on Computing}, volume = {33}, journal = {INFORMS Journal on Computing}, number = {2}, doi = {10.1287/ijoc.2020.1050}, pages = {421 -- 435}, abstract = {The generalization of MIP techniques to deal with nonlinear, potentially non-convex, constraints have been a fruitful direction of research for computational MINLP in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers towards the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared towards two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality.}, language = {en} } @misc{BertholdWitzig, author = {Berthold, Timo and Witzig, Jakob}, title = {Conflict Analysis for MINLP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78964}, abstract = {The generalization of MIP techniques to deal with nonlinear, potentially non-convex, constraints have been a fruitful direction of research for computational MINLP in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers towards the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared towards two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality.}, language = {en} } @misc{WitzigBerthold, author = {Witzig, Jakob and Berthold, Timo}, title = {Conflict-Free Learning for Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/978-3-030-58942-4_34}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-75338}, abstract = {Conflict learning plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. A major step for MIP conflict learning is to aggregate the LP relaxation of an infeasible subproblem to a single globally valid constraint, the dual proof, that proves infeasibility within the local bounds. Among others, one way of learning is to add these constraints to the problem formulation for the remainder of the search. We suggest to not restrict this procedure to infeasible subproblems, but to also use global proof constraints from subproblems that are not (yet) infeasible, but can be expected to be pruned soon. As a special case, we also consider learning from integer feasible LP solutions. First experiments of this conflict-free learning strategy show promising results on the MIPLIB2017 benchmark set.}, language = {en} } @inproceedings{WitzigBerthold, author = {Witzig, Jakob and Berthold, Timo}, title = {Conflict-Free Learning for Mixed Integer Programming}, series = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2020}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2020}, number = {12296}, publisher = {Springer, Cham.}, doi = {10.1007/978-3-030-58942-4_34}, pages = {521 -- 530}, abstract = {Conflict learning plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. A major step for MIP conflict learning is to aggregate the LP relaxation of an infeasible subproblem to a single globally valid constraint, the dual proof, that proves infeasibility within the local bounds. Among others, one way of learning is to add these constraints to the problem formulation for the remainder of the search. We suggest to not restrict this procedure to infeasible subproblems, but to also use global proof constraints from subproblems that are not (yet) infeasible, but can be expected to be pruned soon. As a special case, we also consider learning from integer feasible LP solutions. First experiments of this conflict-free learning strategy show promising results on the MIPLIB2017 benchmark set.}, language = {en} } @misc{WitzigBertholdHeinz, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Computational Aspects of Infeasibility Analysis in Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74962}, abstract = {The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The result of this analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept is called conflict graph analysis and has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. Every ray of the dual LP provides a set of multipliers that can be used to generate a single new globally valid linear constraint. This method is called dual proof analysis. The main contribution of this paper is twofold. Firstly, we present three enhancements of dual proof analysis: presolving via variable cancellation, strengthening by applying mixed integer rounding functions, and a filtering mechanism. Further, we provide an intense computational study evaluating the impact of every presented component regarding dual proof analysis. Secondly, this paper presents the first integrated approach to use both conflict graph and dual proof analysis simultaneously within a single MIP solution process. All experiments are carried out on general MIP instances from the standard public test set MIPLIB 2017; the presented algorithms have been implemented within the non-commercial MIP solver SCIP and the commercial MIP solver FICO Xpress.}, language = {en} } @misc{BertholdStuckeyWitzig, author = {Berthold, Timo and Stuckey, Peter and Witzig, Jakob}, title = {Local Rapid Learning for Integer Programs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71190}, abstract = {Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is applied at the root to learn information to support the remaining MIP solve. This has been demonstrated to be beneficial for binary programs. In this paper, we extend the idea of Rapid Learning to integer programs, where not all variables are restricted to the domain {0, 1}, and rather than just running a rapid CP search at the root, we will apply it repeatedly at local search nodes within the MIP search tree. To do so efficiently, we present six heuristic criteria to predict the chance for local Rapid Learning to be successful. Our computational experiments indicate that our extended Rapid Learning algorithm significantly speeds up MIP search and is particularly beneficial on highly dual degenerate problems.}, language = {en} } @misc{WitzigBertholdHeinz, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71170}, abstract = {Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part.}, language = {en} } @inproceedings{WitzigBertholdHeinz, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming}, series = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, volume = {11494}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_6}, pages = {84 -- 94}, abstract = {Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part.}, language = {en} } @inproceedings{BertholdStuckeyWitzig, author = {Berthold, Timo and Stuckey, Peter and Witzig, Jakob}, title = {Local Rapid Learning for Integer Programs}, series = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, volume = {11494}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_5}, pages = {67 -- 83}, abstract = {Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is applied at the root to learn information to support the remaining MIP solve. This has been demonstrated to be beneficial for binary programs. In this paper, we extend the idea of Rapid Learning to integer programs, where not all variables are restricted to the domain {0, 1}, and rather than just running a rapid CP search at the root, we will apply it repeatedly at local search nodes within the MIP search tree. To do so efficiently, we present six heuristic criteria to predict the chance for local Rapid Learning to be successful. Our computational experiments indicate that our extended Rapid Learning algorithm significantly speeds up MIP search and is particularly beneficial on highly dual degenerate problems.}, language = {en} } @inproceedings{MexiBertholdGleixneretal., author = {Mexi, Gioni and Berthold, Timo and Gleixner, Ambros and Nordstr{\"o}m, Jakob}, title = {Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning}, series = {29th International Conference on Principles and Practice of Constraint Programming (CP 2023)}, volume = {280}, booktitle = {29th International Conference on Principles and Practice of Constraint Programming (CP 2023)}, publisher = {Schloss Dagstuhl - Leibniz-Zentrum f{\"u}r Informatik}, doi = {10.4230/LIPIcs.CP.2023.27}, pages = {27:1 -- 27:19}, abstract = {Conflict analysis has been successfully generalized from Boolean satisfiability (SAT) solving to mixed integer programming (MIP) solvers, but although MIP solvers operate with general linear inequalities, the conflict analysis in MIP has been limited to reasoning with the more restricted class of clausal constraint. This is in contrast to how conflict analysis is performed in so-called pseudo-Boolean solving, where solvers can reason directly with 0-1 integer linear inequalities rather than with clausal constraints extracted from such inequalities. In this work, we investigate how pseudo-Boolean conflict analysis can be integrated in MIP solving, focusing on 0-1 integer linear programs (0-1 ILPs). Phrased in MIP terminology, conflict analysis can be understood as a sequence of linear combinations and cuts. We leverage this perspective to design a new conflict analysis algorithm based on mixed integer rounding (MIR) cuts, which theoretically dominates the state-of-the-art division-based method in pseudo-Boolean solving. We also report results from a first proof-of-concept implementation of different pseudo-Boolean conflict analysis methods in the open-source MIP solver SCIP. When evaluated on a large and diverse set of 0-1 ILP instances from MIPLIB2017, our new MIR-based conflict analysis outperforms both previous pseudo-Boolean methods and the clause-based method used in MIP. Our conclusion is that pseudo-Boolean conflict analysis in MIP is a promising research direction that merits further study, and that it might also make sense to investigate the use of such conflict analysis to generate stronger no-goods in constraint programming.}, language = {en} } @misc{TurnerBertholdBesancon, author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu}, title = {A Context-Aware Cutting Plane Selection Algorithm for Mixed-Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91691}, abstract = {The current cut selection algorithm used in mixed-integer programming solvers has remained largely unchanged since its creation. In this paper, we propose a set of new cut scoring measures, cut filtering techniques, and stopping criteria, extending the current state-of-the-art algorithm and obtaining a 5\\% performance improvement for SCIP over the MIPLIB 2017 benchmark set.}, language = {en} } @misc{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Cutting Plane Selection with Analytic Centers and Multiregression}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89065}, abstract = {Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.}, language = {en} } @misc{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Branching via Cutting Plane Selection: Improving Hybrid Branching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91120}, abstract = {Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a 4\% decrease in solve time, and an 8\% decrease in number of nodes over affected instances of MIPLIB 2017.}, language = {en} } @inproceedings{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Cutting Plane Selection with Analytic Centers and Multiregression}, series = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023.}, volume = {13884}, booktitle = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023.}, publisher = {Springer}, doi = {10.1007/978-3-031-33271-5_4}, pages = {52 -- 68}, abstract = {Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.}, language = {en} } @article{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Branching via Cutting Plane Selection: Improving Hybrid Branching}, publisher = {Springer}, abstract = {Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a \$4\\%\$ decrease in solve time, and an \$8\\%\$ decrease in number of nodes over affected instances of MIPLIB 2017.}, language = {en} } @inproceedings{TurnerBertholdBesancon, author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu}, title = {A Context-Aware Cutting Plane Selection Algorithm for Mixed-Integer Programming}, abstract = {The current cut selection algorithm used in mixed-integer programming solvers has remained largely unchanged since its creation. In this paper, we propose a set of new cut scoring measures, cut filtering techniques, and stopping criteria, extending the current state-of-the-art algorithm and obtaining a 5\\% performance improvement for SCIP over the MIPLIB 2017 benchmark set.}, language = {en} }