@article{CookKochSteffyetal., author = {Cook, William and Koch, Thorsten and Steffy, Daniel and Wolter, Kati}, title = {A hybrid branch-and-bound approach for exact rational mixed-integer programming}, series = {Mathematical Programming Computation}, volume = {5}, journal = {Mathematical Programming Computation}, number = {3}, doi = {10.1007/s12532-013-0055-6}, pages = {305 -- 344}, abstract = {We present an exact rational solver for mixed-integer linear programming that avoids the numerical inaccuracies inherent in the floating-point computations used by existing software. This allows the solver to be used for establishing theoretical results and in applications where correct solutions are critical due to legal and financial consequences. Our solver is a hybrid symbolic/numeric implementation of LP-based branch-and-bound, using numerically-safe methods for all binding computations in the search tree. Computing provably accurate solutions by dynamically choosing the fastest of several safe dual bounding methods depending on the structure of the instance, our exact solver is only moderately slower than an inexact floating-point branch-and-bound solver. The software is incorporated into the SCIP optimization framework, using the exact LP solver QSopt_ex and the GMP arithmetic library. Computational results are presented for a suite of test instances taken from the MIPLIB and Mittelmann libraries and for a new collection of numerically difficult instances.}, language = {en} } @misc{ArnoldBertholdHeinzetal., author = {Arnold, Thomas and Berthold, Timo and Heinz, Stefan and Vigerske, Stefan and Henrion, Ren{\´e} and Gr{\"o}tschel, Martin and Koch, Thorsten and Tischendorf, Caren and R{\"o}misch, Werner}, title = {A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs}, series = {MATHEON - Mathematics for Key Technologies}, volume = {1}, journal = {MATHEON - Mathematics for Key Technologies}, editor = {Deuflhard, Peter and Gr{\"o}tschel, Martin and H{\"o}mberg, Dietmar and Horst, Ulrich and Kramer, J{\"u}rg and Mehrmann, Volker and Polthier, Konrad and Schmidt, Frank and Sch{\"u}tte, Christof and Skutella, Martin and Sprekels, J{\"u}rgen}, publisher = {European Mathematical Society}, doi = {10.4171/137}, pages = {135 -- 146}, abstract = {Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de}, language = {en} } @article{BertholdHendelKoch2017, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {From feasibility to improvement to proof: three phases of solving mixed-integer programs}, series = {Optimization Methods and Software}, volume = {33}, journal = {Optimization Methods and Software}, number = {3}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2017.1392519}, pages = {499 -- 517}, year = {2017}, abstract = {Modern mixed-integer programming (MIP) solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three distinct phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behaviour of the non-commercial MIP solver Scip at the predicted phase transition points.}, language = {en} } @article{Koch, author = {Koch, Thorsten}, title = {The ZIMPL modeling language}, series = {Optima}, volume = {103}, journal = {Optima}, pages = {8 -- 9}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Combining NP-Hard Reduction Techniques and Strong Heuristics in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem}, issn = {1438-0064}, doi = {10.1137/17M1145963}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64699}, abstract = {Borne out of a surprising variety of practical applications, the maximum-weight connected subgraph problem has attracted considerable interest during the past years. This interest has not only led to notable research on theoretical properties, but has also brought about several (exact) solvers-with steadily increasing performance. Continuing along this path, the following article introduces several new algorithms such as reduction techniques and heuristics and describes their integration into an exact solver. The new methods are evaluated with respect to both their theoretical and practical properties. Notably, the new exact framework allows to solve common problem instances from the literature faster than all previous approaches. Moreover, one large-scale benchmark instance from the 11th DIMACS Challenge can be solved for the first time to optimality and the primal-dual gap for two other ones can be significantly reduced.}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65439}, abstract = {This article introduces new preprocessing techniques for the Steiner tree problem in graphs and one of its most popular relatives, the maximum-weight connected subgraph problem. Several of the techniques generalize previous results from the literature. The correctness of the new methods is shown, but also their NP-hardness is demonstrated. Despite this pessimistic worst-case complexity, several relaxations are discussed that are expected to allow for a strong practical efficiency of these techniques in strengthening both exact and heuristic solving approaches.}, language = {en} } @misc{GamrathGleixnerKochetal., author = {Gamrath, Gerald and Gleixner, Ambros and Koch, Thorsten and Miltenberger, Matthias and Kniasew, Dimitri and Schl{\"o}gel, Dominik and Martin, Alexander and Weninger, Dieter}, title = {Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming}, issn = {1438-0064}, doi = {10.4208/jcm.1905-m2019-0055}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61107}, abstract = {SAP's decision support systems for optimized supply network planning rely on mixed-integer programming as the core engine to compute optimal or near-optimal solutions. The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of a robust and future-proof decision support system for a large and diverse customer base. In this paper we describe our coordinated efforts to ensure that the performance of the underlying solution algorithms matches the complexity of the large supply chain problems and tight time limits encountered in practice.}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Transformations for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem to SAP}, issn = {1438-0064}, doi = {10.4208/jcm.1709-m2017-0002}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-59777}, abstract = {Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this paper transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, we demonstrate the considerable implications for practical solving approaches, including the computation of strong upper and lower bounds.}, language = {en} } @misc{GreuelKochPauleetal., author = {Greuel, Martin and Koch, Thorsten and Paule, Peter and Sommese, Andrew}, title = {Mathematical Software - ICMS 2016, 5th Int. Conf. Berlin, Germany, July 11-14, 2016, Proceedings}, series = {Lecture Notes in Computer Science (LNCS)}, volume = {9725}, journal = {Lecture Notes in Computer Science (LNCS)}, publisher = {Springer}, isbn = {978-3-319-42431-6}, doi = {10.1007/978-3-319-42432-3}, pages = {XXIV, 532}, language = {en} } @article{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Transformations for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem to SAP}, series = {Journal of Computational Mathematics}, volume = {36}, journal = {Journal of Computational Mathematics}, number = {3}, doi = {10.4208/jcm.1709-m2017-0002}, pages = {459 -- 468}, abstract = {Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this paper transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, we demonstrate the considerable implications for practical solving approaches, including the computation of strong upper and lower bounds.}, language = {en} }