@article{TurnerKochSerranoetal., author = {Turner, Mark and Koch, Thorsten and Serrano, Felipe and Winkler, Michael}, title = {Adaptive Cut Selection in Mixed-Integer Linear Programming}, series = {Open Journal of Mathematical Optimization}, volume = {4}, journal = {Open Journal of Mathematical Optimization}, doi = {10.5802/ojmo.25}, pages = {5}, abstract = {Cutting plane selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017 and a neural network verification data set. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP.}, language = {en} } @article{ChenKochZakiyevaetal., author = {Chen, Ying and Koch, Thorsten and Zakiyeva, Nazgul and Liu, Kailiang and Xu, Zhitong and Chen, Chun-houh and Nakano, Junji and Honda, Keisuke}, title = {Article's scientific prestige: Measuring the impact of individual articles in the web of science}, series = {Journal of Informetrics}, volume = {17}, journal = {Journal of Informetrics}, number = {1}, doi = {10.1016/j.joi.2023.101379}, pages = {101379}, abstract = {We performed a citation analysis on the Web of Science publications consisting of more than 63 million articles and 1.45 billion citations on 254 subjects from 1981 to 2020. We proposed the Article's Scientific Prestige (ASP) metric and compared this metric to number of citations (\#Cit) and journal grade in measuring the scientific impact of individual articles in the large-scale hierarchical and multi-disciplined citation network. In contrast to \#Cit, ASP, that is computed based on the eigenvector centrality, considers both direct and indirect citations, and provides steady-state evaluation cross different disciplines. We found that ASP and \#Cit are not aligned for most articles, with a growing mismatch amongst the less cited articles. While both metrics are reliable for evaluating the prestige of articles such as Nobel Prize winning articles, ASP tends to provide more persuasive rankings than \#Cit when the articles are not highly cited. The journal grade, that is eventually determined by a few highly cited articles, is unable to properly reflect the scientific impact of individual articles. The number of references and coauthors are less relevant to scientific impact, but subjects do make a difference.}, language = {en} } @article{PedersenSpreckelsenGotzesetal., author = {Pedersen, Jaap and Spreckelsen, Klaus and Gotzes, Uwe and Zittel, Janina and Koch, Thorsten}, title = {Beimischung von Wasserstoff zum Erdgas: Eine Kapazit{\"a}tsstudie des deutschen Gasnetzes}, series = {gwf Gas + Energie}, journal = {gwf Gas + Energie}, edition = {06/2023}, publisher = {Vulkan Verlag}, abstract = {Die europaische Gasinfrastruktur wird disruptiv in ein zukunftiges dekarbonisiertes Energiesystem ver{\"a}ndert; ein Prozess, der angesichts der j{\"u}ngsten politischen Situation beschleunigt werden muss. Mit einem wachsenden Wasserstoffmarkt wird der pipelinebasierte Transport unter Nutzung der bestehenden Erdgasinfrastruktur wirtschaftlich sinnvoll, tr{\"a}gt zur Erh{\"o}hung der {\"o}ffentlichen Akzeptanz bei und beschleunigt den Umstellungsprozess. In diesem Beitrag wird die maximal technisch machbare Einspeisung von Wasserstoff in das bestehende deutsche Erdgastransportnetz hinsichtlich regulatorischer Grenzwerte der Gasqualit{\"a}t analysiert. Die Analyse erfolgt auf Basis eines transienten Tracking-Modells, das auf dem allgemeinen Pooling-Problem einschließlich Linepack aufbaut. Es zeigt sich, dass das Gasnetz auch bei strengen Grenzwerten gen ̈ugend Kapazit{\"a}t bietet, um f{\"u}r einen großen Teil der bis 2030 geplanten Erzeugungskapazit{\"a}t f{\"u}r gr{\"u}nen Wasserstoff als garantierter Abnehmer zu dienen.}, language = {de} } @article{PedersenSpreckelsenGotzesetal., author = {Pedersen, Jaap and Spreckelsen, Klaus and Gotzes, Uwe and Zittel, Janina and Koch, Thorsten}, title = {Beimischung von Wasserstoff zum Erdgas: Eine Kapazit{\"a}tsstudie des deutschen Gasnetzes}, series = {3R - Fachzeitschrift f{\"u}r Rohrleitungssystem}, journal = {3R - Fachzeitschrift f{\"u}r Rohrleitungssystem}, number = {06/2023}, pages = {70 -- 75}, abstract = {Die europ{\"a}ische Gasinfrastruktur wird disruptiv in ein zuk{\"u}nftiges dekarbonisiertes Energiesystem ver{\"a}ndert; ein Prozess, der angesichts der j{\"u}ngsten politischen Situation beschleunigt werden muss. Mit einem wachsenden Wasserstoffmarkt wird der pipelinebasierte Transport unter Nutzung der bestehenden Erdgasinfrastruktur wirtschaftlich sinnvoll, tr{\"a}gt zur Erh{\"o}hung der {\"o}ffentlichen Akzeptanz bei und beschleunigt den Umstellungsprozess. In diesem Fachbeitrag wird die maximal technisch machbare Einspeisung von Wasserstoff in das bestehende deutsche Erdgastransportnetz hinsichtlich regulatorischer Grenzwerte der Gasqualit{\"a}t analysiert. Die Analyse erfolgt auf Basis eines transienten Tracking-Modells, das auf dem allgemeinen Pooling-Problem einschließlich Linepack aufbaut. Es zeigt sich, dass das Gasnetz auch bei strengen Grenzwerten gen{\"u}gend Kapazit{\"a}t bietet, um f{\"u}r einen großen Teil der bis 2030 geplanten Erzeugungskapazit{\"a}t f{\"u}r gr{\"u}nen Wasserstoff als garantierter Abnehmer zu dienen.}, language = {de} } @misc{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Branching via Cutting Plane Selection: Improving Hybrid Branching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91120}, abstract = {Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a 4\% decrease in solve time, and an 8\% decrease in number of nodes over affected instances of MIPLIB 2017.}, language = {en} } @article{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Branching via Cutting Plane Selection: Improving Hybrid Branching}, publisher = {Springer}, abstract = {Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a \$4\\%\$ decrease in solve time, and an \$8\\%\$ decrease in number of nodes over affected instances of MIPLIB 2017.}, language = {en} } @inproceedings{YuekselErguenKochZittel, author = {Yueksel-Erguen, Inci and Koch, Thorsten and Zittel, Janina}, title = {Consistent flow scenario generation based on open data for operational analysis of European gas transport networks}, series = {Operations Research Proceedings 2023}, booktitle = {Operations Research Proceedings 2023}, abstract = {In recent years, European gas transport has been affected by major disruptive events like political issues such as, most recently, the Russian war on Ukraine. To incorporate the impacts of such events into decision-making during the energy transition, more complex models for gas network analysis are required. However, the limited availability of consistent data presents a significant obstacle in this endeavor. We use a mathematical-modeling-based scenario generator to deal with this obstacle. The scenario generator consists of capacitated network flow models representing the gas network at different aggregation levels. In this study, we present the coarse-to-fine approach utilized in this scenario generator.}, language = {en} } @inproceedings{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Cutting Plane Selection with Analytic Centers and Multiregression}, series = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023.}, volume = {13884}, booktitle = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023.}, publisher = {Springer}, doi = {10.1007/978-3-031-33271-5_4}, pages = {52 -- 68}, abstract = {Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.}, language = {en} } @article{LeKoch, author = {Le, Thi Thai and Koch, Thorsten}, title = {Effect of inertia force on the interface stability of a tangential-velocity discontinuity in porous media}, series = {International Journal of Multiphase Flow}, volume = {169}, journal = {International Journal of Multiphase Flow}, doi = {10.1016/j.ijmultiphaseflow.2023.104612}, abstract = {The present study investigates the stability of a tangential-velocity discontinuity in porous media during the withdrawing and injecting processes of natural gases from and into an underground gas storage. The focus is placed on analyzing the impact of inertia forces on the interface stability using the Forchheimer equations. Other publications have relied primarily on Darcy's law to describe flow stability in porous media. However, Darcy's law only adequately describes flows in which viscous forces dominate over inertia forces. As the flow rate increases, the significance of inertia forces becomes more pronounced, and Darcy's law becomes insufficient for considering such flows. Our findings indicate that even a slight consideration of the inertia effect leads to permanent destabilization of the discontinuity interface, regardless of the fluid viscosity or the Mach number. In contrast, when the inertia effect is neglected, the interface is stabilized across the entire Mach number range if the fluid viscosity is strong enough.}, language = {en} } @article{BestuzhevaBesanconChenetal., author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {Enabling research through the SCIP optimization suite 8.0}, series = {ACM Transactions on Mathematical Software}, volume = {49}, journal = {ACM Transactions on Mathematical Software}, number = {2}, doi = {10.1145/3585516}, pages = {1 -- 21}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. The focus of this article is on the role of the SCIP Optimization Suite in supporting research. SCIP's main design principles are discussed, followed by a presentation of the latest performance improvements and developments in version 8.0, which serve both as examples of SCIP's application as a research tool and as a platform for further developments. Furthermore, this article gives an overview of interfaces to other programming and modeling languages, new features that expand the possibilities for user interaction with the framework, and the latest developments in several extensions built upon SCIP.}, language = {en} } @article{RehfeldtKochShinano, author = {Rehfeldt, Daniel and Koch, Thorsten and Shinano, Yuji}, title = {Faster exact solution of sparse MaxCut and QUBO problems}, series = {Mathematical Programming Computation}, volume = {15}, journal = {Mathematical Programming Computation}, doi = {10.1007/s12532-023-00236-6}, pages = {445 -- 470}, abstract = {The maximum-cut problem is one of the fundamental problems in combinatorial optimization. With the advent of quantum computers, both the maximum-cut and the equivalent quadratic unconstrained binary optimization problem have experienced much interest in recent years. This article aims to advance the state of the art in the exact solution of both problems—by using mathematical programming techniques. The main focus lies on sparse problem instances, although also dense ones can be solved. We enhance several algorithmic components such as reduction techniques and cutting-plane separation algorithms, and combine them in an exact branch-and-cut solver. Furthermore, we provide a parallel implementation. The new solver is shown to significantly outperform existing state-of-the-art software for sparse maximum-cut and quadratic unconstrained binary optimization instances. Furthermore, we improve the best known bounds for several instances from the 7th DIMACS Challenge and the QPLIB, and solve some of them (for the first time) to optimality.}, language = {en} } @misc{TjusilaBesanconTurneretal., author = {Tjusila, Gennesaret and Besancon, Mathieu and Turner, Mark and Koch, Thorsten}, title = {How Many Clues To Give? A Bilevel Formulation For The Minimum Sudoku Clue Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-90902}, abstract = {It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95\\% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest.}, language = {en} } @article{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Implications, Conflicts, and Reductions for Steiner Trees}, series = {Mathematical Programming}, volume = {197}, journal = {Mathematical Programming}, publisher = {Springer}, doi = {10.1007/s10107-021-01757-5}, pages = {903 -- 966}, language = {en} } @misc{PetersKottigBrandtnerChristofetal., author = {Peters-Kottig, Wolfgang and Brandtner, Andreas and Christof, J{\"u}rgen and Hauffe, Yves and Koch, Thorsten and Kuo, Leslie and Krause, Katja and M{\"u}ller, Anja and Seeliger, Frank and Stanek, Ursula and St{\"o}hr, Elena and Vetter, Danilo and Winkler, Alexander and Zeyns, Andrea and Rusch, Beate}, title = {KOBV Jahresbericht 2021-2022}, volume = {2021-2022}, address = {Berlin}, organization = {Kooperativer Bibliotheksverbund Berlin-Brandenburg}, issn = {0934-5892}, doi = {10.12752/9116}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91162}, language = {de} } @inproceedings{KochRehfeldtShinano, author = {Koch, Thorsten and Rehfeldt, Daniel and Shinano, Yuji}, title = {On the state of QUBO solving}, series = {Operations Research Proceedings 2023}, booktitle = {Operations Research Proceedings 2023}, abstract = {It is regularly claimed that quantum computers will bring breakthrough progress in solving challenging combinatorial optimization problems relevant in practice. In particular, Quadratic Unconstrained Binary Optimization (QUBO) problems are said to be the model of choice for use in (adiabatic) quantum systems during the noisy intermediate- scale quantum (NISQ) era. Even the first commercial quantum-based systems are advertised to solve such problems. Theoretically, any Integer Program can be converted into a QUBO. In practice, however, there are some caveats, as even for problems that can be nicely modeled as a QUBO, this might not be the most effective way to solve them. We review the state of QUBO solving on digital and quantum computers and provide insights regarding current benchmark instances and modeling.}, language = {en} } @misc{TurnerChmielaKochetal., author = {Turner, Mark and Chmiela, Antonia and Koch, Thorsten and Winkler, Michael}, title = {PySCIPOpt-ML: Embedding Trained Machine Learning Models into Mixed-Integer Programs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-93095}, abstract = {A standard tool for modelling real-world optimisation problems is mixed-integer programming (MIP). However, for many of these problems there is either incomplete information describing variable relations, or the relations between variables are highly complex. To overcome both these hurdles, machine learning (ML) models are often used and embedded in the MIP as surrogate models to represent these relations. Due to the large amount of available ML frameworks, formulating ML models into MIPs is highly non-trivial. In this paper we propose a tool for the automatic MIP formulation of trained ML models, allowing easy integration of ML constraints into MIPs. In addition, we introduce a library of MIP instances with embedded ML constraints. The project is available at https://github.com/Opt-Mucca/PySCIPOpt-ML.}, language = {en} } @inproceedings{TurnerChmielaKochetal., author = {Turner, Mark and Chmiela, Antonia and Koch, Thorsten and Winkler, Michael}, title = {PySCIPOpt-ML: Embedding Trained Machine Learning Models into Mixed-Integer Programs}, abstract = {A standard tool for modelling real-world optimisation problems is mixed-integer programming (MIP). However, for many of these problems there is either incomplete information describing variable relations, or the relations between variables are highly complex. To overcome both these hurdles, machine learning (ML) models are often used and embedded in the MIP as surrogate models to represent these relations. Due to the large amount of available ML frameworks, formulating ML models into MIPs is highly non-trivial. In this paper we propose a tool for the automatic MIP formulation of trained ML models, allowing easy integration of ML constraints into MIPs. In addition, we introduce a library of MIP instances with embedded ML constraints. The project is available at https://github.com/Opt-Mucca/PySCIPOpt-ML.}, language = {en} }