@misc{RehfeldtKochShinano, author = {Rehfeldt, Daniel and Koch, Thorsten and Shinano, Yuji}, title = {Faster exact solution of sparse MaxCut and QUBO problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85715}, language = {en} } @misc{TurnerKochSerranoetal., author = {Turner, Mark and Koch, Thorsten and Serrano, Felipe and Winkler, Michael}, title = {Adaptive Cut Selection in Mixed-Integer Linear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86055}, abstract = {Cut selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP.}, language = {en} } @misc{BertelmannKochCeynowaetal., author = {Bertelmann, Roland and Koch, Thorsten and Ceynowa, Klaus and S{\"o}llner, Konstanze and Christof, J{\"u}rgen and Rusch, Beate and Sch{\"a}ffler, Hildegard and Putnings, Markus and Pampel, Heinz and Kuberek, Monika and Boltze, Julia and Lohrum, Stefan and Retter, Regina and H{\"o}llerl, Annika and Faensen, Katja and Steffen, Ronald and Gross, Matthias and Hoffmann, Cornelia and Haoua, Marsa}, title = {DeepGreen: Etablierung und Weiterentwicklung rechtssicherer Workflows zur effizienten Umsetzung von Open-Access-Komponenten in Lizenzvereinbarungen f{\"u}r wissenschaftliche Publikationen - Abschlussbericht}, issn = {1438-0064}, doi = {10.12752/8542}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85420}, abstract = {DeepGreen wurde vom 01.08.2018 bis zum 30.06.2021 in einer zweiten Projektphase von der Deutschen Forschungsgemeinschaft (DFG) gef{\"o}rdert. DeepGreen unterst{\"u}tzt Bibliotheken als Dienstleister f{\"u}r Hochschulen, außeruniversit{\"a}re Forschungseinrichtungen und die dort t{\"a}tigen Wissenschaftler:innen dabei, Publikationen auf Open-Access-Repositorien frei zug{\"a}nglich zu machen und f{\"o}rdert das Zusammenspiel von wissenschaftlichen Einrichtungen und Verlagen. An der zweiten Projektphase waren der Kooperative Bibliotheksverbund Berlin-Brandenburg, die Bayerische Staatsbibliothek, der Bibliotheksverbund Bayern, die Universit{\"a}tsbibliotheken der Friedrich-Alexander-Universit{\"a}t Erlangen-N{\"u}rnberg und der Technischen Universit{\"a}t Berlin und das Helmholtz Open Science Office beteiligt. In dem Projekt wurde erfolgreich eine technische und organisatorische L{\"o}sung zur automatisierten Verteilung von Artikeldaten wissenschaftlicher Verlage an institutionelle und fachliche Repositorien entwickelt. In der zweiten Projektphase lag der Fokus auf der Erprobung der Datendrehscheibe in der Praxis und der Ausweitung auf weitere Datenabnehmer und weitere Verlage. Im Anschluss an die DFG-gef{\"o}rderte Projektlaufzeit ist DeepGreen in einen zweij{\"a}hrigen Pilotbetrieb {\"u}bergegangen. Ziel des Pilotbetriebs ist es, den {\"U}bergang in einen bundesweiten Real-Betrieb vorzubereiten.}, language = {de} } @misc{KochBertholdPedersenetal., author = {Koch, Thorsten and Berthold, Timo and Pedersen, Jaap and Vanaret, Charlie}, title = {Progress in Mathematical Programming Solvers from 2001 to 2020}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82779}, abstract = {This study investigates the progress made in LP and MILP solver performance during the last two decades by comparing the solver software from the beginning of the millennium with the codes available today. On average, we found out that for solving LP/MILP, computer hardware got about 20 times faster, and the algorithms improved by a factor of about nine for LP and around 50 for MILP, which gives a total speed-up of about 180 and 1,000 times, respectively. However, these numbers have a very high variance and they considerably underestimate the progress made on the algorithmic side: many problem instances can nowadays be solved within seconds, which the old codes are not able to solve within any reasonable time.}, language = {en} } @misc{RehfeldtFujisawaKochetal., author = {Rehfeldt, Daniel and Fujisawa, Katsuki and Koch, Thorsten and Nakao, Masahiro and Shinano, Yuji}, title = {Computing single-source shortest paths on graphs with over 8 trillion edges}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88180}, abstract = {This paper introduces an implementation for solving the single-source shortest path problem on distributed-memory machines. It is tailored to power-law graphs and scales to trillions of edges. The new implementation reached 2nd and 10th place in the latest Graph500 benchmark in June 2022 and handled the largest and second-largest graphs among all participants.}, language = {en} } @misc{ClarnerTawfikKochetal., author = {Clarner, Jan-Patrick and Tawfik, Christine and Koch, Thorsten and Zittel, Janina}, title = {Network-induced Unit Commitment - A model class for investment and production portfolio planning for multi-energy systems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-87607}, abstract = {In light of the energy transition production planning of future decarbonized energy systems lead to very large and complex optimization problems. A widely used modeling paradigm for modeling and solving such problems is mathematical programming. While there are various scientific energy system models and modeling tools, most of them do not provide the necessary level of detail or the modeling flexibility to be applicable for industrial usage. Industrial modeling tools, on the other hand, provide a high level of detail and modeling flexibility. However, those models often exhibit a size and complexity that restricts their scope to a time horizon of several months, severely complicating long-term planning. As a remedy, we propose a model class that is detailed enough for real-world usage but still compact enough for long-term planning. The model class is based on a generalized unit commitment problem on a network with investment decisions. The focus lies on the topological dependency of different energy production and transportation units.}, language = {en} } @misc{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Cutting Plane Selection with Analytic Centers and Multiregression}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89065}, abstract = {Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.}, language = {en} } @misc{PedersenLeKochetal., author = {Pedersen, Jaap and Le, Thi Thai and Koch, Thorsten and Zittel, Janina}, title = {Optimal discrete pipe sizing for tree-shaped CO2 networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-87574}, abstract = {While energy-intensive industries like the steel industry plan to switch to renewable energy sources, other industries, such as the cement industry, have to rely on carbon capture storage and utilization technologies to reduce the inevitable carbon dioxide (CO2) emissions of their production processes. In this context, we investigate the problem of finding optimal pipeline diameters from a discrete set of diameters for a tree-shaped network transporting captured CO2 from multiple sources to a single sink. The general problem of optimizing arc capacities in potential-based fluid networks is a challenging mixed-integer nonlinear program. Additionally, the behaviour of CO2 is highly sensitive and nonlinear regarding temperature and pressure changes. We propose an iterative algorithm splitting the problem into two parts: a) the pipe-sizing problem under a fixed supply scenario and temperature distribution and b) the thermophysical modelling including mixing effects, the Joule-Thomson effect, and heat exchange with the surrounding environment. We show the effectiveness of our approach by applying our algorithm to a real-world network planning problem for a CO2 network in Western Germany.}, language = {en} }