@article{PfetschFuegenschuhGeissleretal., author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, series = {Optimization Methods and Software}, journal = {Optimization Methods and Software}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2014.888426}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.}, language = {en} } @article{FuegenschuhGeisslerGollmeretal., author = {F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Gollmer, Ralf and Hayn, Christine and Henrion, Ren{\´e} and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Mirkov, Radoslava and Morsi, Antonio and R{\"o}misch, Werner and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Willert, Bernhard}, title = {Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets}, series = {Energy Systems}, volume = {5}, journal = {Energy Systems}, number = {3}, publisher = {Springer Berlin Heidelberg}, address = {Berlin}, doi = {10.1007/s12667-013-0099-8}, pages = {449 -- 473}, abstract = {The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network's capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations.}, language = {en} } @article{KochMartin1998, author = {Koch, Thorsten and Martin, Alexander}, title = {Solving Steiner tree problems in graphs to optimality}, series = {Networks}, volume = {32}, journal = {Networks}, doi = {10.1002/(SICI)1097-0037(199810)32:3\%3C207::AID-NET5\%3E3.0.CO;2-O}, pages = {207 -- 232}, year = {1998}, language = {en} } @article{AchterbergKochMartin2005, author = {Achterberg, Tobias and Koch, Thorsten and Martin, Alexander}, title = {Branching Rules Revisited}, series = {Operations Research Letters}, volume = {33}, journal = {Operations Research Letters}, number = {1}, publisher = {Elsevier / North-Holland}, doi = {10.1016/j.orl.2004.04.002}, pages = {42 -- 54}, year = {2005}, language = {en} } @article{EisenblaetterGeerdesKochetal.2005, author = {Eisenbl{\"a}tter, Andreas and Geerdes, Hans-Florian and Koch, Thorsten and Martin, Alexander and Wess{\"a}ly, Roland}, title = {UMTS Radio Network Evaluation and Optimization beyond Snapshots}, series = {Mathematical Methods of Operations Research}, volume = {63}, journal = {Mathematical Methods of Operations Research}, number = {1}, doi = {10.1007/s00186-005-0002-z}, pages = {1 -- 29}, year = {2005}, language = {en} } @article{AchterbergKochMartin2006, author = {Achterberg, Tobias and Koch, Thorsten and Martin, Alexander}, title = {MIPLIB 2003}, series = {Operations Research Letters}, volume = {34}, journal = {Operations Research Letters}, number = {4}, publisher = {Elsevier / North-Holland}, doi = {10.1016/j.orl.2005.07.009}, pages = {361 -- 372}, year = {2006}, language = {en} } @article{EisenblaetterFuegenschuhFledderusetal.2003, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Fledderus, E. and Geerdes, Hans-Florian and Heideck, B. and Junglas, Daniel and Koch, Thorsten and K{\"u}rner, T. and Martin, Alexander}, title = {Mathematical Methods for Automatic Optimization of UMTS Radio Networks}, number = {D4.3}, editor = {Martin, Alexander}, publisher = {IST-2000-28088 MOMENTUM}, year = {2003}, language = {en} } @article{EisenblaetterGeerdesJunglasetal.2003, author = {Eisenbl{\"a}tter, Andreas and Geerdes, Hans-Florian and Junglas, Daniel and Koch, Thorsten and K{\"u}rner, T. and Martin, Alexander}, title = {Final Report on Automatic Planning and Optimisation}, number = {D4.7}, publisher = {IST-2000-28088 MOMENTUM}, year = {2003}, language = {en} } @article{GamrathKochMartinetal., author = {Gamrath, Gerald and Koch, Thorsten and Martin, Alexander and Miltenberger, Matthias and Weninger, Dieter}, title = {Progress in presolving for mixed integer programming}, series = {Mathematical Programming Computation}, volume = {7}, journal = {Mathematical Programming Computation}, number = {4}, doi = {10.1007/s12532-015-0083-5}, pages = {367 -- 398}, abstract = {This paper describes three presolving techniques for solving mixed integer programming problems (MIPs) that were implemented in the academic MIP solver SCIP. The task of presolving is to reduce the problem size and strengthen the formulation, mainly by eliminating redundant information and exploiting problem structures. The first method fixes continuous singleton columns and extends results known from duality fixing. The second analyzes and exploits pairwise dominance relations between variables, whereas the third detects isolated subproblems and solves them independently. The performance of the presented techniques is demonstrated on two MIP test sets. One contains all benchmark instances from the last three MIPLIB versions, while the other consists of real-world supply chain management problems. The computational results show that the combination of all three presolving techniques almost halves the solving time for the considered supply chain management problems. For the MIPLIB instances we obtain a speedup of 20 \% on affected instances while not degrading the performance on the remaining problems.}, language = {en} } @article{GamrathGleixnerKochetal., author = {Gamrath, Gerald and Gleixner, Ambros and Koch, Thorsten and Miltenberger, Matthias and Kniasew, Dimitri and Schl{\"o}gel, Dominik and Martin, Alexander and Weninger, Dieter}, title = {Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming}, series = {Journal of Computational Mathematics}, volume = {37}, journal = {Journal of Computational Mathematics}, doi = {10.4208/jcm.1905-m2019-0055}, pages = {866 -- 888}, abstract = {The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of robust and future-proof decision support systems. The complexity of industrial-scale supply chain optimization, however, often poses limits to the application of general mixed-integer programming solvers. In this paper we describe algorithmic innovations that help to ensure that MIP solver performance matches the complexity of the large supply chain problems and tight time limits encountered in practice. Our computational evaluation is based on a diverse set, modeling real-world scenarios supplied by our industry partner SAP.}, language = {en} } @article{KochSchmidtHilleretal., author = {Koch, Thorsten and Schmidt, Martin and Hiller, Benjamin and Pfetsch, Marc and Geißler, Bj{\"o}rn and Henrion, Ren{\´e} and Joormann, Imke and Martin, Alexander and Morsi, Antonio and R{\"o}misch, Werner and Schewe, Lars and Schultz, R{\"u}diger}, title = {Capacity Evaluation for Large-Scale Gas Networks}, series = {German Success Stories in Industrial Mathematics}, volume = {35}, journal = {German Success Stories in Industrial Mathematics}, isbn = {978-3-030-81454-0}, doi = {10.1007/978-3-030-81455-7}, pages = {23 -- 28}, language = {en} }