@misc{BleyKoch, author = {Bley, Andreas and Koch, Thorsten}, title = {Optimierung in der Planung und beim Aufbau des G-WiN}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6169}, number = {00-48}, abstract = {Ende Juni diesen Jahres wurde das Gigabit-Wissenschaftsnetz offiziell gestartet. In der zweij{\"a}hrigen Vorbereitungsphase wurden nicht nur die technischen M{\"o}glichkeiten der neuen {\"U}bertragungstechniken und Dienste getestet. Es wurden auch verschiedene Fragestellungen zum effizienten Einsatz der verf{\"u}gbaren Ressourcen f{\"u}r den Betrieb des G-WiN untersucht. In diesem Artikel beschreiben wir, wie das G-WiN zu seiner jetzigen Struktur und Topologie gekommen ist.}, language = {de} } @misc{BleyKoch, author = {Bley, Andreas and Koch, Thorsten}, title = {Integer programming approaches to access and backbone IP-network planning}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7081}, number = {02-41}, abstract = {In this article we study the problem of designing a nation-wide communication network. Such networks usually consist of an access layer, a backbone layer, and maybe several intermediate layers. The nodes of each layer must be connected to those of the next layer in a tree-like fashion. The backbone layer has to satisfy certain survivability and routing constraints. Given the node locations, the demands between them, the possible connections and hardware configurations, and various other technical and administrational constraints, the goal is to decide, which node is assigned to which network level, how the nodes are connected, what hardware must be installed, and how traffic is routed in the backbone. Mixed integer linear programming models and solution methods are presented for both the access and the backbone network design problem. The focus is on the design of IP-over-SDH networks, but the access network design model and large parts of the backbone network design models are general and also applicable for other types of communication networks. Results obtained with these methods in the planning of the German research network are presented.}, language = {en} } @misc{EisenblaetterFuegenschuhKochetal., author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Koch, Thorsten and Koster, Arie M.C.A. and Martin, Alexander and Pfender, Tobias and Wegel, Oliver and Wess{\"a}ly, Roland}, title = {Modelling Feasible Network Configurations for UMTS}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6837}, number = {02-16}, abstract = {A model for the optimisation of the location and configuration of base stations in a UMTS network is described. The focus is primarily on modelling the configuration problem sufficiently accurate using mixed-integer variables and (essentially) linear constraints. These constraints reflect the limited downlink code capacity in each cell, the interference limitations for successful up- and downlink transmissions, the need for sufficiently strong (cell) pilot signals, and the potential gain for mobiles from being in soft(er) hand-over. It is also explained how to use the model as a basis for rating network configurations.}, language = {en} } @misc{AchterbergKochMartin, author = {Achterberg, Tobias and Koch, Thorsten and Martin, Alexander}, title = {Branching on History Information}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6990}, number = {02-32}, abstract = {Mixed integer programs (\$MIPs\$) are commonly solved with branch and bound algorithms based on linear programming. The success and the speed of the algorithm strongly depends on the strategy used to select the branching variables. Today's state-of-the-art strategy is called \emph{pseudocost branching} and uses information of previous branchings to determine the current branching. We propose a modification of \emph{pseudocost branching} which we call \emph{history branching}. This strategy has been implemented in \$SIP\$, a state-of-the-art \$MIP\$ solver. We give computational results that show the superiority of the new strategy.}, language = {en} } @misc{Koch, author = {Koch, Thorsten}, title = {ZIMPL User Guide}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6466}, number = {01-20}, abstract = {{\sc Zimpl} is a little language to translate the mathematical model of a problem into a linear or (mixed-)integer mathematical program expressed in {\tt lp} or {\tt mps} file format which can be read by a LP or MIP solver.}, language = {en} } @phdthesis{Koch, author = {Koch, Thorsten}, title = {Rapid Mathematical Programming}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8346}, number = {04-58}, abstract = {The thesis deals with the implementation and application of out-of-the-box tools in linear and mixed integer programming. It documents the lessons learned and conclusions drawn from five years of implementing, maintaining, extending, and using several computer codes to solve real-life industrial problems. By means of several examples it is demonstrated how to apply algebraic modeling languages to rapidly devise mathematical models of real-world problems. It is shown that today's MIP solvers are capable of solving the resulting mixed integer programs, leading to an approach that delivers results very quickly. Even though, problems are tackled that not long ago required the implementation of specialized branch-and-cut algorithms. In the first part of the thesis the modeling language Zimpl is introduced. Chapter 2 contains a complete description of the language. In the subsequent chapter details of the implementation are described. Both theoretical and practical considerations are discussed. Aspects of software engineering, error prevention, and detection are addressed. In the second part several real-world projects are examined that employed the methodology and the tools developed in the first part. Chapter 4 presents three projects from the telecommunication industry dealing with facility location problems. Chapter 5 characterizes questions that arise in UMTS planning. Problems, models, and solutions are discussed. Special emphasis is put on the dependency of the precision of the input data and the results. Possible reasons for unexpected and undesirable solutions are explained. Finally, the Steiner tree packing problem in graphs, a well-known hard combinatorial problem, is revisited. A formerly known, but not yet used model is applied to combine switchbox wire routing and via minimization. All instances known from the literature are solved by this approach, as are some newly generated bigger problem instances.}, language = {en} } @misc{BleyKochNiu, author = {Bley, Andreas and Koch, Thorsten and Niu, Lingfeng}, title = {Experiments with nonlinear extensions to SCIP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8300}, number = {08-28}, abstract = {This paper describes several experiments to explore the options for solving a class of mixed integer nonlinear programming problems that stem from a real-world mine production planning project. The only type of nonlinear constraints in these problems are bilinear equalities involving continuous variables, which enforce the ratios between elements in mixed material streams. A branch-and-bound algorithm to handle the integer variables has been tried in another project. However, this branch-and-bound algorithm is not effective for handling the nonlinear constraints. Therefore state-of-the-art nonlinear solvers are utilized to solve the resulting nonlinear subproblems in this work. The experiments were carried out using the NEOS server for optimization. After finding that current nonlinear programming solvers seem to lack suitable preprocessing capabilities, we preprocess the instances beforehand and use an heuristic approach to solve the nonlinear subproblems. In the appendix, we explain how to add a polynomial constraint handler that uses IPOPT as embedded nonlinear programming solver for the constraint programming framework SCIP. This is one of the crucial steps for implementing our algorithm in SCIP. We briefly described our approach and give an idea of the work involved.}, language = {en} } @misc{KochWessaely, author = {Koch, Thorsten and Wess{\"a}ly, Roland}, title = {Hierarchical Infrastructure Planning in Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8174}, number = {04-42}, abstract = {In this article, strategical infrastructure planning problems in the design of large-scale telecommunication networks are discussed based on experiences from three projects with industrial partners: The access network planning of the German Gigabit-Wissenschaftsnetz (G-WiN) for DFN (Verein zur F{\"o}rderung eines Deutschen Forschungsnetzes e.V.), the mobile network switching center location planning project for E-Plus Mobilfunk, and the fixed network switching center location planning project for TELEKOM AUSTRIA. We introduce a mathematical model for a hierarchical multi-commodity capacitated facility location problem, present adaptions of this basic model to the specific requirements within the different projects and discuss the individual peculiarities and model decisions made. Eventually, we present and discuss computational results of three associated case studies, illustrating '"how we did the job`` with mathematical methods.}, language = {en} } @misc{Koch, author = {Koch, Thorsten}, title = {The final NETLIB-LP results}, doi = {10.1016/s0167-6377(03)00094-4}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7274}, number = {03-05}, abstract = {The NETLIB has now served for 18 years as a repository of LP problem instances. From the beginning to the present day there was some uncertainness about the precise values of the optimal solutions. We implemented a program using exact rational arithmetic to compute proofs for the feasibility and optimality of an LP solution. This paper reports the \emph{exact} optimal objective values for all NETLIB problems.}, language = {en} } @misc{EisenblaetterGeerdesKochetal., author = {Eisenbl{\"a}tter, Andreas and Geerdes, Hans-Florian and Koch, Thorsten and T{\"u}rke, Ulrich}, title = {MOMENTUM Data Scenarios for Radio Network Planning and Simulation (Extended Abstract)}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7829}, number = {04-07}, abstract = {We present publicly available data sets related to research on wireless networks. The scenarios contain a wide range of data and are detailed in all aspects. To our knowledge, this is the most realistic, comprehensive, and detailed \emph{public} data collection on mobile networking. We indicate example uses of this data collection in applications related tu UMTS.}, language = {en} } @misc{AchterbergKochMartin, author = {Achterberg, Tobias and Koch, Thorsten and Martin, Alexander}, title = {Branching rules revisited}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7886}, number = {04-13}, abstract = {Mixed integer programs are commonly solved with linear programming based branch-and-bound algorithms. The success of the algorithm strongly depends on the strategy used to select the variable to branch on. We present a new generalization called {\sl reliability branching} of today's state-of-the-art {\sl strong branching} and {\sl pseudocost branching} strategies for linear programming based branch-and-bound algorithms. After reviewing commonly used branching strategies and performing extensive computational studies we compare different parameter settings and show the superiority of our proposed newstrategy.}, language = {en} } @misc{EisenblaetterGeerdesKochetal., author = {Eisenbl{\"a}tter, Andreas and Geerdes, Hans-Florian and Koch, Thorsten and Martin, Alexander and Wess{\"a}ly, Roland}, title = {UMTS Radio Network Evaluation and Optimization beyond Snapshots}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7903}, number = {04-15}, abstract = {This paper is concerned with UMTS radio network design. Our task is to reconfigure antennas and the related cells as to improve network quality. In contrast to second generation GSM networks, \emph{interference} plays a paramount role when designing third generation radio networks. A known compact formulation for assessing the interference characteristics of a radio network as coupling relations between cells based on user snapshots is generalized to statistical average load. This enables us to overcome the notorious difficulties of snapshot-based network optimization approaches. We recall a mixed-integer programming model for the network design problem that is based on user snapshots and contrast it with a new network design model based on the average coupling formulation. Exemplarily focusing on the important problem of optimizing antenna tilts, we give computational results for a fast local search algorithm and the application of a MIP solver to both models. These results demonstrate that our new average-based approaches outperform state-of-the-art snapshot models for UMTS radio network optimization.}, language = {en} } @misc{Koch, author = {Koch, Thorsten}, title = {Verteilter Dokumenten-Speicher, Erfahrungen mit den Kluwer-Daten des Friedrich-Althoff-Konsortiums}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7726}, number = {03-50}, abstract = {Dieser Bericht beschreibt die Erfahrungen und Schlussfolgerungen,die im Rahmen der VDS-Vorstudie bei der Speicherung der vom Friedrich-Althoff-Konsortium lizenzierten Zeitschriften des Kluwer-Verlages gewonnen wurden.}, language = {de} } @misc{BleyKochWessaely, author = {Bley, Andreas and Koch, Thorsten and Wess{\"a}ly, Roland}, title = {Large-scale hierarchical networks: How to compute an optimal architecture?}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7799}, number = {04-04}, abstract = {In this article, we present a mathematical model and an algorithm to support one of the central strategic planning decisions of network operators: How to organize a large number of locations into a hierarchical network? We propose a solution approach that is based on mixed-integer programming and Lagrangian relaxation techniques. As major advantage, our approach provides not only solutions but also worst-case quality guarantees. Real-world scenarios with more than 750 locations have been solved within 30 minutes to less than 1\\% off optimality.}, language = {en} } @misc{EisenblaetterFuegenschuhGeerdesetal., author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Geerdes, Hans-Florian and Junglas, Daniel and Koch, Thorsten and Martin, Alexander}, title = {Optimization Methods for UMTS Radio Network Planning}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-7637}, number = {03-41}, abstract = {The UMTS radio network planning problem poses the challenge of designing a cost-effective network that provides users with sufficient coverage and capacity. We describe an optimization model for this problem that is based on comprehensive planning data of the EU project MOMENTUM. We present heuristic mathematical methods for this realistic model, including computational results.}, language = {en} } @misc{LuceDuintjerTebbensLiesenetal., author = {Luce, Robert and Duintjer Tebbens, Jurjen and Liesen, J{\"o}rg and Nabben, Robert and Gr{\"o}tschel, Martin and Koch, Thorsten and Schenk, Olaf}, title = {On the Factorization of Simplex Basis Matrices}, organization = {TU Berlin, Zuse Institute Berlin, University of Basel}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11392}, number = {09-24}, abstract = {In the simplex algorithm, solving linear systems with the basis matrix and its transpose accounts for a large part of the total computation time. We investigate various methods from modern numerical linear algebra to improve the computation speed of the basis updates arising in LPs. The experiments are executed on a large real-world test set. The most widely used solution technique is sparse LU factorization, paired with an updating scheme that allows to use the factors over several iterations. Clearly, small number of fill-in elements in the LU factors is critical for the overall performance. Using a wide range of LPs we show numerically that after a simple permutation the non-triangular part of the basis matrix is so small, that the whole matrix can be factorized with (relative) fill-in close to the optimum. This permutation has been exploited by simplex practitioners for many years. But to our knowledge no systematic numerical study has been published that demonstrates the effective reduction to a surprisingly small non-triangular problem, even for large scale LPs. For the factorization of the non-triangular part most existing simplex codes use some variant of dynamic Markowitz pivoting, which originated in the late 1950s. We also show numerically that, in terms of fill-in and in the simplex context, dynamic Markowitz is quite consistently superior to other, more recently developed techniques.}, language = {en} } @misc{AchterbergBertholdKochetal., author = {Achterberg, Tobias and Berthold, Timo and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: a New Approach to Integrate CP and MIP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10520}, number = {08-01}, abstract = {This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques from SAT solving. SCIP is available in source code and free for non-commercial use. We demonstrate the usefulness of CIP on two tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we employ the CIP framework to solve chip design verification problems, which involve some highly non-linear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the non-linear constraints by employing constraint programming techniques.}, language = {en} } @misc{BleyGleixnerKochetal., author = {Bley, Andreas and Gleixner, Ambros and Koch, Thorsten and Vigerske, Stefan}, title = {Comparing MIQCP solvers to a specialised algorithm for mine production scheduling}, organization = {ZIB}, issn = {1438-0064}, doi = {10.1007/978-3-642-25707-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11507}, number = {09-32}, abstract = {In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm.}, language = {en} } @misc{AchterbergBertholdHeinzetal., author = {Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: Techniques and Applications}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10950}, number = {08-43}, abstract = {This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques.}, language = {en} } @misc{AchterbergKochTuchscherer, author = {Achterberg, Tobias and Koch, Thorsten and Tuchscherer, Andreas}, title = {On the Effects of Minor Changes in Model Formulations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10808}, number = {08-29}, abstract = {Starting with the description of the Traveling Salesmen Problem formulation as given by van Vyve and Wolsey in the article Approximate extended formulations'', we investigate the effects of small variations onto the performance of contemporary mixed integer programming solvers. We will show that even minor changes in the formulation of the model can result in performance difference of more than a factor of 1000. As the results show it is not obvious which changes will result in performance improvements and which not.}, language = {en} } @misc{AchterbergHeinzKoch, author = {Achterberg, Tobias and Heinz, Stefan and Koch, Thorsten}, title = {Counting solutions of integer programs using unrestricted subtree detection}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10632}, number = {08-09}, abstract = {In the recent years there has been tremendous progress in the development of algorithms to find optimal solutions for integer programs. In many applications it is, however, desirable (or even necessary) to generate all feasible solutions. Examples arise in the areas of hardware and software verification and discrete geometry. In this paper, we investigate how to extend branch-and-cut integer programming frameworks to support the generation of all solutions. We propose a method to detect so-called unrestricted subtrees, which allows us to prune the integer program search tree and to collect several solutions simultaneously. We present computational results of this branch-and-count paradigm which show the potential of the unrestricted subtree detection.}, language = {en} } @misc{KaibelKoch, author = {Kaibel, Volker and Koch, Thorsten}, title = {Mathematik f{\"u}r den Volkssport}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9225}, number = {06-28}, abstract = {"`Volkssport Sudoku"' titelt der Stern in seiner Ausgabe vom 24. Mai2006. In der Tat traut sich derzeit kaum noch eine Zeitung, ohne Sudoku zu erscheinen. Die Begeisterung am L{\"o}sen dieser Zahlenr{\"a}tsel offenbart eine unvermutete Freude am algorithmischen Arbeiten. Mathematisch kann man Sudokus als lineare diophantische Gleichungssysteme mit Nichtnegativit{\"a}tsbedingungen formulieren. Solche ganzzahligen linearen Programme sind die wichtigsten Modellierungswerkzeuge in zahlreichen Anwendungsgebieten wie z.B. der Optimierung von Telekommunikations- und Verkehrsnetzen. Moderne Verfahren zur L{\"o}sung dieser Optimierungsprobleme sind durch Sudokus allerdings deutlich weniger zu beeindrucken als Zeitungsleser.}, language = {de} } @misc{AbboudGroetschelKoch, author = {Abboud, Nadine and Gr{\"o}tschel, Martin and Koch, Thorsten}, title = {Mathematical Methods for Physical Layout of Printed Circuit Boards: An Overview}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9231}, number = {06-29}, abstract = {This article surveys mathematical models and methods used for physical PCB layout, i.e., component placement and wire routing. The main concepts are briefly described together with relevant references.}, language = {en} } @misc{FroylandKochMegowetal., author = {Froyland, Gary and Koch, Thorsten and Megow, Nicole and Duane, Emily and Wren, Howard}, title = {Optimizing the Landside Operation of a Container Terminal}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9004}, number = {06-06}, abstract = {This paper concerns the problem of operating a landside container exchange area that is serviced by multiple semi-automated rail mounted gantry cranes (RMGs) that are moving on a single bi-directional traveling lane. Such a facility is being built by Patrick Corporation at the Port Botany terminal in Sydney. The gantry cranes are a scarce resource and handle the bulk of container movements. Thus, they require a sophisticated analysis to achieve near optimal utilization. We present a three stage algorithm to manage the container exchange facility, including the scheduling of cranes, the control of associated short-term container stacking, and the allocation of delivery locations for trucks and other container transporters. The key components of our approach are a time scale decomposition, whereby an integer program controls decisions across a long time horizon to produce a balanced plan that is fed to a series of short time scale online subproblems, and a highly efficient space-time divisioning of short term storage areas. A computational evaluation shows that our heuristic can find effective solutions for the planning problem; on real-world data it yields a solution at most~8\\% above a lower bound on optimal RMG utilization.}, language = {en} } @misc{Koch, author = {Koch, Thorsten}, title = {Rapid Mathematical Programming or How to Solve Sudoku Puzzles in a few Seconds}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8845}, number = {05-51}, abstract = {Using the popular puzzle game of Sudoku, this article highlights some of the ideas and topics covered in ZR-04-58.}, language = {en} } @misc{AchterbergGroetschelKoch, author = {Achterberg, Tobias and Gr{\"o}tschel, Martin and Koch, Thorsten}, title = {Software for Teaching Modeling of Integer Programming Problems}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9176}, number = {06-23}, abstract = {Modern applications of mathematical programming must take into account a multitude of technical details, business demands, and legal requirements. Teaching the mathematical modeling of such issues and their interrelations requires real-world examples that are well beyond the toy sizes that can be tackled with the student editions of most commercial software packages. We present a new tool, which is freely available for academic use including complete source code. It consists of an algebraic modeling language and a linear mixed integer programming solver. The performance and features of the tool are in the range of current state-of-the-art commercial tools, though not in all aspects as good as the best ones. Our tool does allow the execution and analysis of large real-world instances in the classroom and can therefore enhance the teaching of problem solving issues. Teaching experience has been gathered and practical usability was tested in classes at several universities and a two week intensive block course at TU Berlin. The feedback from students and teachers has been very positive.}, language = {en} } @misc{AchterbergKochMartin, author = {Achterberg, Tobias and Koch, Thorsten and Martin, Alexander}, title = {MIPLIB 2003}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-8625}, number = {05-28}, abstract = {This paper reports on the fourth version of the Mixed Integer Programming Library. Since ({\sc miplib}) is to provide a concise set of challenging problems, it became necessary to purge instances that became too easy. We present an overview of the 27 new problems and statistical data for all 60 instances.}, language = {en} } @misc{KochMartin, author = {Koch, Thorsten and Martin, Alexander}, title = {Solving Steiner Tree Problems in Graphs to Optimality}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-2526}, number = {SC-96-42}, abstract = {In this paper we present the implementation of a branch-and-cut algorithm for solving Steiner tree problems in graphs. Our algorithm is based on an integer programming formulation for directed graphs and comprises preprocessing, separation algorithms and primal heuristics. We are able to solve all problem instances discussed in literature to optimality, including one to our knowledge not yet solved problem. We also report on our computational experiences with some very large Steiner tree problems arising from the design of electronic circuits. All test problems are gathered in a newly introduced library called {\em SteinLib} that is accessible via World Wide Web.}, language = {en} } @misc{KochMartinVoss, author = {Koch, Thorsten and Martin, Alexander and Voß, Stefan}, title = {SteinLib: An Updated Library on Steiner Tree Problems in Graphs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6056}, number = {00-37}, abstract = {In this paper we present the {\em SteinLib}, a library of data sets for the Steiner tree problem in graphs. This library extends former libraries on Steiner tree problems by many new interesting and difficult instances, most of them arising from real-world applications. We give a survey on the difficulty of these problem instances by giving references to state-of-the-art software packages that were the first or are currently among the best to solve these instances.}, language = {en} } @misc{Koch, type = {Master Thesis}, author = {Koch, Thorsten}, title = {Jack-III Ein Branch \& Cut-Verfahren zur L{\"o}sung des gewichteten Steinerbaumproblems in Graphen}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9946}, school = {Zuse Institute Berlin (ZIB)}, abstract = {In der vorliegenden Arbeit werden die grundlegenden Gedanken und die Implementierung eines Branch \& Cut-Algorithmus zur L{\"o}sung des gewichteten Steinerbaumproblems in Graphen beschrieben. Der Algorithmus basiert auf der linearen Relaxierung einer bidirektionalen ganzzahligen Formulierung des Problems. Wir werden das Problem einf{\"u}hren, drei ganzzahlige Modellierungen vorstellen, auf Reduktionsverfahren und Heuristiken eingehen sowie das Verfahren und seine Implementierung darstellen. Am Ende werden wir die Implementierung an 191 bekannten Probleminstanzen testen und auch optimale L{\"o}sungen f� ur zwei nach Wissen des Autors bis zu diesem Zeitpunkt ungel{\"o}ste Instanzen liefern.}, language = {de} } @misc{KochAchterbergAndersenetal.2010, author = {Koch, Thorsten and Achterberg, Tobias and Andersen, Erling and Bastert, Oliver and Berthold, Timo and Bixby, Robert E. and Danna, Emilie and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Lodi, Andrea and Mittelmann, Hans and Ralphs, Ted and Salvagnin, Domenico and Steffy, Daniel and Wolter, Kati}, title = {MIPLIB 2010}, doi = {10.1007/s12532-011-0025-9}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12953}, number = {10-31}, year = {2010}, abstract = {This paper reports on the fifth version of the Mixed Integer Programming Library. The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups. This includes the main benchmark test set of 87 instances, which are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved. For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to test the accuracy of provided solutions using exact arithmetic.}, language = {en} } @misc{FuegenschuhGeisslerGollmeretal., author = {F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Gollmer, Ralf and Hayn, Christine and Henrion, Rene and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Mirkov, Radoslava and Morsi, Antonio and R{\"o}misch, Werner and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Willert, Bernhard}, title = {Mathematical Optimization for Challenging Network Planning Problems in Unbundled Liberalized Gas Markets}, issn = {1438-0064}, doi = {10.1007/s12667-013-0099-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17821}, abstract = {The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor where united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We show that these new paradigms lead to new and challenging mathematical optimization problems. In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed. With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten}, title = {ParaSCIP - a parallel extension of SCIP}, doi = {10.1007/978-3-642-24025-6_12}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11921}, number = {10-27}, abstract = {Mixed integer programming (MIP) has become one of the most important techniques in Operations Research and Discrete Optimization. SCIP (Solving Constraint Integer Programs) is currently one of the fastest non-commercial MIP solvers. It is based on the branch-and-bound procedure in which the problem is recursively split into smaller subproblems, thereby creating a so-called branching tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization on a distributed memory computing environment. ParaSCIP uses SCIP solvers as independently running processes to solve subproblems (nodes of the branching tree) locally. This makes the parallelization development independent of the SCIP development. Thus, ParaSCIP directly profits from any algorithmic progress in future versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve two previously unsolved instances from MIPLIB2003, a standard test set library for MIP solvers. For these computations, we used up to 2048 cores of the HLRN~II supercomputer.}, language = {en} } @misc{FuegenschuhHillerHumpolaetal., author = {F{\"u}genschuh, Armin and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Schwarz, Robert and Schweiger, Jonas and Szab{\´o}, J{\´a}cint}, title = {Gas Network Topology Optimization for Upcoming Market Requirements}, doi = {10.1109/EEM.2011.5953035}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12348}, number = {11-09}, abstract = {Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed.}, language = {en} } @misc{HoangKoch, author = {Hoang, Nam-Dung and Koch, Thorsten}, title = {Steiner Tree Packing Revisited}, issn = {1438-0064}, doi = {10.1007/s00186-012-0391-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14625}, number = {12-02}, abstract = {The Steiner tree packing problem (STPP) in graphs is a long studied problem in combinatorial optimization. In contrast to many other problems, where there have been tremendous advances in practical problem solving, STPP remains very difficult. Most heuristics schemes are ineffective and even finding feasible solutions is already NP-hard. What makes this problem special is that in order to reach the overall optimal solution non-optimal solutions to the underlying NP-hard Steiner tree problems must be used. Any non-global approach to the STPP is likely to fail. Integer programming is currently the best approach for computing optimal solutions. In this paper we review some "classical" STPP instances which model the underlying real world application only in a reduced form. Through improved modelling, including some new cutting planes, and by emplyoing recent advances in solver technology we are for the first time able to solve those instances in the original 3D grid graphs to optimimality.}, language = {en} } @misc{KochRalphsShinano, author = {Koch, Thorsten and Ralphs, Ted and Shinano, Yuji}, title = {What could a million CPUs do to solve Integer Programs?}, issn = {1438-0064}, doi = {10.1007/s00186-012-0390-9}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14222}, number = {11-40}, abstract = {Given the steady increase in cores per CPU, it is only a matter of time until supercomputers will have a million or more cores. In this article, we investigate the opportunities and challenges that will arise when trying to utilize this vast computing power to solve a single integer linear optimization problem. We also raise the question of whether best practices in sequential solution of ILPs will be effective in massively parallel environments.}, language = {en} } @misc{CookKochSteffyetal., author = {Cook, William and Koch, Thorsten and Steffy, Daniel and Wolter, Kati}, title = {A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming}, issn = {1438-0064}, doi = {10.1007/s12532-013-0055-6}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17171}, abstract = {We present an exact rational solver for mixed-integer linear programming that avoids the numerical inaccuracies inherent in the floating-point computations used by existing software. This allows the solver to be used for establishing theoretical results and in applications where correct solutions are critical due to legal and financial consequences. Our solver is a hybrid symbolic/numeric implementation of LP-based branch-and-bound, using numerically-safe methods for all binding computations in the search tree. Computing provably accurate solutions by dynamically choosing the fastest of several safe dual bounding methods depending on the structure of the instance, our exact solver is only moderately slower than an inexact floating-point branch-and-bound solver. The software is incorporated into the SCIP optimization framework, using the exact LP solver QSopt_ex and the GMP arithmetic library. Computational results are presented for a suite of test instances taken from the MIPLIB and Mittelmann libraries and for a new collection of numerically difficult instances.}, language = {en} } @article{AchterbergGroetschelKoch2006, author = {Achterberg, Tobias and Gr{\"o}tschel, Martin and Koch, Thorsten}, title = {Teaching MIP Modeling and Solving}, series = {OR/MS Today}, volume = {33}, journal = {OR/MS Today}, number = {6}, pages = {14 -- 15}, year = {2006}, language = {en} } @article{CookKochSteffyetal., author = {Cook, William and Koch, Thorsten and Steffy, Daniel and Wolter, Kati}, title = {A hybrid branch-and-bound approach for exact rational mixed-integer programming}, series = {Mathematical Programming Computation}, volume = {5}, journal = {Mathematical Programming Computation}, number = {3}, doi = {10.1007/s12532-013-0055-6}, pages = {305 -- 344}, abstract = {We present an exact rational solver for mixed-integer linear programming that avoids the numerical inaccuracies inherent in the floating-point computations used by existing software. This allows the solver to be used for establishing theoretical results and in applications where correct solutions are critical due to legal and financial consequences. Our solver is a hybrid symbolic/numeric implementation of LP-based branch-and-bound, using numerically-safe methods for all binding computations in the search tree. Computing provably accurate solutions by dynamically choosing the fastest of several safe dual bounding methods depending on the structure of the instance, our exact solver is only moderately slower than an inexact floating-point branch-and-bound solver. The software is incorporated into the SCIP optimization framework, using the exact LP solver QSopt_ex and the GMP arithmetic library. Computational results are presented for a suite of test instances taken from the MIPLIB and Mittelmann libraries and for a new collection of numerically difficult instances.}, language = {en} } @misc{KochMartinPfetsch, author = {Koch, Thorsten and Martin, Alexander and Pfetsch, Marc}, title = {Progress in Academic Computational Integer Programming}, series = {Facets of Combinatorial Optimization}, journal = {Facets of Combinatorial Optimization}, editor = {J{\"u}nger, Michael and Reinelt, Gerhard}, publisher = {Springer}, doi = {10.1007/978-3-642-38189-8_19}, pages = {483 -- 506}, language = {en} } @misc{ArnoldBertholdHeinzetal., author = {Arnold, Thomas and Berthold, Timo and Heinz, Stefan and Vigerske, Stefan and Henrion, Ren{\´e} and Gr{\"o}tschel, Martin and Koch, Thorsten and Tischendorf, Caren and R{\"o}misch, Werner}, title = {A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs}, series = {MATHEON - Mathematics for Key Technologies}, volume = {1}, journal = {MATHEON - Mathematics for Key Technologies}, editor = {Deuflhard, Peter and Gr{\"o}tschel, Martin and H{\"o}mberg, Dietmar and Horst, Ulrich and Kramer, J{\"u}rg and Mehrmann, Volker and Polthier, Konrad and Schmidt, Frank and Sch{\"u}tte, Christof and Skutella, Martin and Sprekels, J{\"u}rgen}, publisher = {European Mathematical Society}, doi = {10.4171/137}, pages = {135 -- 146}, abstract = {Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de}, language = {en} } @book{KochHillerPfetschetal., author = {Koch, Thorsten and Hiller, Benjamin and Pfetsch, Marc and Schewe, Lars}, title = {Evaluating Gas Network Capacities}, publisher = {SIAM}, isbn = {978-1-611973-68-6}, pages = {xvi + 376 pages}, language = {en} } @article{BertholdHendelKoch2017, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {From feasibility to improvement to proof: three phases of solving mixed-integer programs}, series = {Optimization Methods and Software}, volume = {33}, journal = {Optimization Methods and Software}, number = {3}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2017.1392519}, pages = {499 -- 517}, year = {2017}, abstract = {Modern mixed-integer programming (MIP) solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three distinct phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behaviour of the non-commercial MIP solver Scip at the predicted phase transition points.}, language = {en} } @article{Koch, author = {Koch, Thorsten}, title = {The ZIMPL modeling language}, series = {Optima}, volume = {103}, journal = {Optima}, pages = {8 -- 9}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Combining NP-Hard Reduction Techniques and Strong Heuristics in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem}, issn = {1438-0064}, doi = {10.1137/17M1145963}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64699}, abstract = {Borne out of a surprising variety of practical applications, the maximum-weight connected subgraph problem has attracted considerable interest during the past years. This interest has not only led to notable research on theoretical properties, but has also brought about several (exact) solvers-with steadily increasing performance. Continuing along this path, the following article introduces several new algorithms such as reduction techniques and heuristics and describes their integration into an exact solver. The new methods are evaluated with respect to both their theoretical and practical properties. Notably, the new exact framework allows to solve common problem instances from the literature faster than all previous approaches. Moreover, one large-scale benchmark instance from the 11th DIMACS Challenge can be solved for the first time to optimality and the primal-dual gap for two other ones can be significantly reduced.}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65439}, abstract = {This article introduces new preprocessing techniques for the Steiner tree problem in graphs and one of its most popular relatives, the maximum-weight connected subgraph problem. Several of the techniques generalize previous results from the literature. The correctness of the new methods is shown, but also their NP-hardness is demonstrated. Despite this pessimistic worst-case complexity, several relaxations are discussed that are expected to allow for a strong practical efficiency of these techniques in strengthening both exact and heuristic solving approaches.}, language = {en} } @article{PfetschFuegenschuhGeissleretal., author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, series = {Optimization Methods and Software}, journal = {Optimization Methods and Software}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2014.888426}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.}, language = {en} } @article{HoangKoch, author = {Hoang, Nam-Dung and Koch, Thorsten}, title = {Steiner tree packing revisited}, series = {Mathematical Methods of Operations Research}, volume = {76}, journal = {Mathematical Methods of Operations Research}, number = {1}, doi = {10.1007/s00186-012-0391-8}, pages = {95 -- 123}, abstract = {The Steiner tree packing problem (STPP) in graphs is a long studied problem in combinatorial optimization. In contrast to many other problems, where there have been tremendous advances in practical problem solving, STPP remains very difficult. Most heuristics schemes are ineffective and even finding feasible solutions is already NP-hard. What makes this problem special is that in order to reach the overall optimal solution non-optimal solutions to the underlying NP-hard Steiner tree problems must be used. Any non-global approach to the STPP is likely to fail. Integer programming is currently the best approach for computing optimal solutions. In this paper we review some "classical" STPP instances which model the underlying real world application only in a reduced form. Through improved modelling, including some new cutting planes, and by emplyoing recent advances in solver technology we are for the first time able to solve those instances in the original 3D grid graphs to optimimality.}, language = {en} } @incollection{BorndoerferHoangKarbsteinetal., author = {Bornd{\"o}rfer, Ralf and Hoang, Nam-Dung and Karbstein, Marika and Koch, Thorsten and Martin, Alexander}, title = {How many Steiner terminals can you connect in 20 years?}, series = {Facets of Combinatorial Optimization; Festschrift for Martin Gr{\"o}tschel}, booktitle = {Facets of Combinatorial Optimization; Festschrift for Martin Gr{\"o}tschel}, editor = {J{\"u}nger, Michael and Reinelt, Gerhard}, publisher = {Springer}, doi = {10.1007/978-3-642-38189-8_10}, pages = {215 -- 244}, language = {en} } @article{FuegenschuhGeisslerGollmeretal., author = {F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Gollmer, Ralf and Hayn, Christine and Henrion, Ren{\´e} and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Mirkov, Radoslava and Morsi, Antonio and R{\"o}misch, Werner and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Willert, Bernhard}, title = {Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets}, series = {Energy Systems}, volume = {5}, journal = {Energy Systems}, number = {3}, publisher = {Springer Berlin Heidelberg}, address = {Berlin}, doi = {10.1007/s12667-013-0099-8}, pages = {449 -- 473}, abstract = {The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network's capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations.}, language = {en} } @misc{GamrathGleixnerKochetal., author = {Gamrath, Gerald and Gleixner, Ambros and Koch, Thorsten and Miltenberger, Matthias and Kniasew, Dimitri and Schl{\"o}gel, Dominik and Martin, Alexander and Weninger, Dieter}, title = {Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming}, issn = {1438-0064}, doi = {10.4208/jcm.1905-m2019-0055}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61107}, abstract = {SAP's decision support systems for optimized supply network planning rely on mixed-integer programming as the core engine to compute optimal or near-optimal solutions. The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of a robust and future-proof decision support system for a large and diverse customer base. In this paper we describe our coordinated efforts to ensure that the performance of the underlying solution algorithms matches the complexity of the large supply chain problems and tight time limits encountered in practice.}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Transformations for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem to SAP}, issn = {1438-0064}, doi = {10.4208/jcm.1709-m2017-0002}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-59777}, abstract = {Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this paper transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, we demonstrate the considerable implications for practical solving approaches, including the computation of strong upper and lower bounds.}, language = {en} } @misc{GreuelKochPauleetal., author = {Greuel, Martin and Koch, Thorsten and Paule, Peter and Sommese, Andrew}, title = {Mathematical Software - ICMS 2016, 5th Int. Conf. Berlin, Germany, July 11-14, 2016, Proceedings}, series = {Lecture Notes in Computer Science (LNCS)}, volume = {9725}, journal = {Lecture Notes in Computer Science (LNCS)}, publisher = {Springer}, isbn = {978-3-319-42431-6}, doi = {10.1007/978-3-319-42432-3}, pages = {XXIV, 532}, language = {en} } @misc{BorndoerferHoangKarbsteinetal., author = {Bornd{\"o}rfer, Ralf and Hoang, Nam-Dung and Karbstein, Marika and Koch, Thorsten and Martin, Alexander}, title = {How Many Steiner Terminals Can You Connect in 20 Years?}, issn = {1438-0064}, doi = {10.1007/978-3-642-38189-8_10}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42524}, abstract = {Steiner trees are constructed to connect a set of terminal nodes in a graph. This basic version of the Steiner tree problem is idealized, but it can effectively guide the search for successful approaches to many relevant variants, from both a theoretical and a computational point of view. This article illustrates the theoretical and algorithmic progress on Steiner tree type problems on two examples, the Steiner connectivity and the Steiner tree packing problem.}, language = {en} } @article{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Transformations for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem to SAP}, series = {Journal of Computational Mathematics}, volume = {36}, journal = {Journal of Computational Mathematics}, number = {3}, doi = {10.4208/jcm.1709-m2017-0002}, pages = {459 -- 468}, abstract = {Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this paper transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, we demonstrate the considerable implications for practical solving approaches, including the computation of strong upper and lower bounds.}, language = {en} } @inproceedings{BertholdGleixnerHeinzetal.2012, author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法}, series = {Proceedings of the 24th RAMP symposium. The Operations Society of Japan, RAMP: Research Association of Mathematical Programming}, booktitle = {Proceedings of the 24th RAMP symposium. The Operations Society of Japan, RAMP: Research Association of Mathematical Programming}, pages = {165 -- 192}, year = {2012}, abstract = {この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.}, language = {ja} } @inproceedings{BleyGleixnerKochetal.2012, author = {Bley, Andreas and Gleixner, Ambros and Koch, Thorsten and Vigerske, Stefan}, title = {Comparing MIQCP Solvers to a Specialised Algorithm for Mine Production Scheduling}, series = {Modeling, Simulation and Optimization of Complex Processes. Proceedings of the Fourth International Conference on High Performance Scientific Computing, March 2-6, 2009, Hanoi, Vietnam}, booktitle = {Modeling, Simulation and Optimization of Complex Processes. Proceedings of the Fourth International Conference on High Performance Scientific Computing, March 2-6, 2009, Hanoi, Vietnam}, doi = {10.1007/978-3-642-25707-0_3}, pages = {25 -- 39}, year = {2012}, abstract = {In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm.}, language = {en} } @inproceedings{FuegenschuhHillerHumpolaetal., author = {F{\"u}genschuh, Armin and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Schwarz, Robert and Schweiger, Jonas and Szabo, Jacint}, title = {Gas Network Topology Optimization for Upcoming Market Requirements}, series = {International Conference on the European Energy Market (EEM)}, booktitle = {International Conference on the European Energy Market (EEM)}, doi = {10.1109/EEM.2011.5953035}, pages = {346 -- 351}, abstract = {Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed.}, language = {en} } @misc{ArnoldBertholdHeinzetal., author = {Arnold, Thomas and Berthold, Timo and Heinz, Stefan and Vigerske, Stefan and Henrion, Ren{\´e} and Gr{\"o}tschel, Martin and Koch, Thorsten and Tischendorf, Caren and R{\"o}misch, Werner}, title = {A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs}, issn = {1438-0064}, doi = {10.4171/137}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49947}, abstract = {Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de}, language = {en} } @phdthesis{Koch, author = {Koch, Thorsten}, title = {Progress in computational integer programming}, language = {en} } @article{SchmidtAssmannBurlacuetal., author = {Schmidt, Martin and Assmann, Denis and Burlacu, Robert and Humpola, Jesco and Joormann, Imke and Kanelakis, Nikolaos and Koch, Thorsten and Oucherif, Djamal and Pfetsch, Marc and Schewe, Lars and Schwarz, Robert and Sirvent, Matthias}, title = {GasLib - A Library of Gas Network Instances}, series = {Data}, volume = {2}, journal = {Data}, number = {4}, doi = {10.3390/data2040040}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {SCIP-Jack—a solver for STP and variants with parallelization extensions: An update}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66416}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. Although the different Steiner tree problem variants are usually strongly related, solution approaches employed so far have been prevalently problem-specific. Against this backdrop, the solver SCIP-Jack was created as a general-purpose framework that can be used to solve the classical Steiner tree problem and 11 of its variants. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. Furthermore, SCIP-Jack includes various newly developed algorithmic components such as preprocessing routines and heuristics. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. After the introduction of SCIP-Jack at the 2014 DIMACS Challenge on Steiner problems, the overall performance of the solver has considerably improved. This article provides an overview on the current state.}, language = {en} } @misc{RalphsShinanoBertholdetal., author = {Ralphs, Ted and Shinano, Yuji and Berthold, Timo and Koch, Thorsten}, title = {Parallel Solvers for Mixed Integer Linear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62239}, abstract = {In this article, we introduce parallel mixed integer linear programming (MILP) solvers. MILP solving algorithms have been improved tremendously in the last two decades. Currently, commercial MILP solvers are known as a strong optimization tool. Parallel MILP solver development has started in 1990s. However, since the improvements of solving algorithms have much impact to solve MILP problems than application of parallel computing, there were not many visible successes. With the spread of multi-core CPUs, current state-of-the-art MILP solvers have parallel implementations and researches to apply parallelism in the solving algorithm also getting popular. We summarize current existing parallel MILP solver architectures.}, language = {en} } @inproceedings{EisenblaetterFuegenschuhGeerdesetal.2004, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Geerdes, Hans-Florian and Junglas, Daniel and Koch, Thorsten and Martin, Alexander}, title = {Integer Programming Methods for UMTS Radio Network Planning}, series = {Proceedings of the WiOpt'04, Cambridge, UK}, booktitle = {Proceedings of the WiOpt'04, Cambridge, UK}, year = {2004}, language = {en} } @incollection{EisenblaetterFuegenschuhKochetal.2002, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Koch, Thorsten and Koster, Arie M.C.A. and Martin, Alexander and Pfender, Tobias and Wegel, Oliver and Wess{\"a}ly, Roland}, title = {Mathematical Model of Feasible Network Configurations for UMTS}, series = {Telecommunications network design and management}, booktitle = {Telecommunications network design and management}, editor = {G. Anandalingam, S.}, publisher = {Kluwer}, pages = {1 -- 24}, year = {2002}, language = {en} } @misc{EisenblaetterFuegenschuhGeerdesetal.2003, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Geerdes, Hans-Florian and Koch, Thorsten and T{\"u}rke, Ulrich and Meijerink, Ellen}, title = {XML Data Specification and Documentation}, publisher = {IST-2000-28088 MOMENTUM Technical Report}, year = {2003}, language = {en} } @inproceedings{AchterbergHeinzKoch2008, author = {Achterberg, Tobias and Heinz, Stefan and Koch, Thorsten}, title = {Counting Solutions of Integer Programs Using Unrestricted Subtree Detection}, series = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008}, volume = {5015}, booktitle = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008}, editor = {Perron, Laurent and Trick, Michael}, publisher = {Springer}, pages = {278 -- 282}, year = {2008}, language = {en} } @inproceedings{BleyKoch2008, author = {Bley, Andreas and Koch, Thorsten}, title = {Integer programming approaches to access and backbone IP-network planning}, series = {Modeling, Simulation and Optimization of Complex Processes, Proceedings of the 3rd International Conference on High Performance Scientific Computing, March 6-10, Hanoi, Vietnam}, booktitle = {Modeling, Simulation and Optimization of Complex Processes, Proceedings of the 3rd International Conference on High Performance Scientific Computing, March 6-10, Hanoi, Vietnam}, publisher = {Springer}, pages = {87 -- 110}, year = {2008}, language = {en} } @article{CookKoch2008, author = {Cook, William and Koch, Thorsten}, title = {Mathematical Programming Computation: A New MPS Journal}, series = {Optima}, journal = {Optima}, number = {78}, publisher = {Mathematical Programming Society \& University of Florida}, pages = {1,7 -- 8,11}, year = {2008}, language = {en} } @article{KochAchterbergAndersenetal.2011, author = {Koch, Thorsten and Achterberg, Tobias and Andersen, Erling and Bastert, Oliver and Berthold, Timo and Bixby, Robert E. and Danna, Emilie and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Lodi, Andrea and Mittelmann, Hans and Ralphs, Ted and Salvagnin, Domenico and Steffy, Daniel and Wolter, Kati}, title = {MIPLIB 2010}, series = {Mathematical Programming Computation}, volume = {3}, journal = {Mathematical Programming Computation}, number = {2}, doi = {10.1007/s12532-011-0025-9}, pages = {103 -- 163}, year = {2011}, language = {en} } @inproceedings{CookKochSteffyetal.2011, author = {Cook, William and Koch, Thorsten and Steffy, Daniel and Wolter, Kati}, title = {An Exact Rational Mixed-Integer Programming Solver}, series = {IPCO 2011}, volume = {6655}, booktitle = {IPCO 2011}, editor = {G{\"u}nl{\"u}k, Oktay and Woeginger, Gerhard}, doi = {10.1007/978-3-642-20807-2_9}, pages = {104 -- 116}, year = {2011}, language = {en} } @inproceedings{KochLeoeveyMirkovetal.2011, author = {Koch, Thorsten and Le{\"o}vey, Hernan and Mirkov, Radoslava and R{\"o}misch, Werner and Wegner-Specht, Isabel}, title = {Szenariogenerierung zur Modellierung der stochastischen Ausspeiselasten in einem Gastransportnetz}, series = {Optimierung in der Energiewirtschaft}, booktitle = {Optimierung in der Energiewirtschaft}, publisher = {VDI-Verlag, D{\"u}sseldorf}, pages = {115 -- 125}, year = {2011}, language = {en} } @inproceedings{MartinGeisslerHeynetal.2011, author = {Martin, Alexander and Geißler, Bj{\"o}rn and Heyn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, series = {Optimierung in der Energiewirtschaft}, booktitle = {Optimierung in der Energiewirtschaft}, publisher = {VDI-Verlag, D{\"u}sseldorf}, pages = {105 -- 114}, year = {2011}, language = {en} } @incollection{DorndorfDrosteKoch2012, author = {Dorndorf, Ulrich and Droste, Stefan and Koch, Thorsten}, title = {Using ZIMPL for Modeling Production Planning Problems}, series = {Algebraic Modeling Systems}, booktitle = {Algebraic Modeling Systems}, editor = {Kallrath, Josef}, publisher = {Springer}, doi = {10.1007/978-3-642-23592-4}, pages = {145 -- 158}, year = {2012}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal.2012, author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten}, title = {ParaSCIP: a parallel extension of SCIP}, series = {Competence in High Performance Computing 2010}, booktitle = {Competence in High Performance Computing 2010}, editor = {Bischof, Christian and Hegering, Heinz-Gerd and Nagel, Wolfgang and Wittum, Gabriel}, publisher = {Springer}, doi = {10.1007/978-3-642-24025-6_12}, pages = {135 -- 148}, year = {2012}, language = {en} } @article{KochRalphsShinano2012, author = {Koch, Thorsten and Ralphs, Ted and Shinano, Yuji}, title = {Could we use a million cores to solve an integer program?}, series = {Mathematical Methods of Operations Research}, volume = {76}, journal = {Mathematical Methods of Operations Research}, number = {1}, doi = {10.1007/s00186-012-0390-9}, pages = {67 -- 93}, year = {2012}, language = {en} } @article{KochMartin1998, author = {Koch, Thorsten and Martin, Alexander}, title = {Solving Steiner tree problems in graphs to optimality}, series = {Networks}, volume = {32}, journal = {Networks}, doi = {10.1002/(SICI)1097-0037(199810)32:3\%3C207::AID-NET5\%3E3.0.CO;2-O}, pages = {207 -- 232}, year = {1998}, language = {en} } @article{JohnstonKelleyCrawfordetal.2000, author = {Johnston, Jennifer and Kelley, Richard and Crawford, Thomas and Morton, D. and Agarwala, Richa and Koch, Thorsten and Sch{\"a}ffer, Alejandro and Francomano, Clair and Biesecker, Leslie}, title = {A novel nemaline myopathy in the Amish caused by a mutation in troponin T1}, series = {American Journal of Human Genetics}, volume = {67}, journal = {American Journal of Human Genetics}, pages = {814 -- 821}, year = {2000}, language = {en} } @article{BleyKoch2000, author = {Bley, Andreas and Koch, Thorsten}, title = {Optimierung des G-WiN}, series = {DFN-Mitteilungen}, journal = {DFN-Mitteilungen}, number = {54}, pages = {13 -- 15}, year = {2000}, language = {en} } @incollection{KochMartinVoss2001, author = {Koch, Thorsten and Martin, Alexander and Voß, Stefan}, title = {SteinLib: An Updated Library on Steiner Tree Problems in Graphs}, series = {Steiner Trees in Industry}, booktitle = {Steiner Trees in Industry}, editor = {Du, D.-Z. and Cheng, X.}, publisher = {Kluwer}, doi = {10.1007/978-1-4613-0255-1_9}, pages = {285 -- 325}, year = {2001}, language = {en} } @article{RosenbergAgarwalaBouffardetal.2002, author = {Rosenberg, Marjorie and Agarwala, Richa and Bouffard, Gerard and Davis, Joie and Fiermonte, Giuseppe and Hilliard, Mark and Koch, Thorsten and Kalikin, Linda and Makalowska, Izabela and Morton, D. and Petty, Elizabeth and Weber, James and Palmieri, Ferdinando and Kelley, Richard and Sch{\"a}ffer, Alejandro and Biesecker, Leslie}, title = {Mutant deoxynucleotide carrier DNC is associated with congenital microcephaly}, series = {Nature Genetics}, volume = {32}, journal = {Nature Genetics}, number = {1}, doi = {10.1038/ng948}, pages = {175 -- 179}, year = {2002}, language = {en} } @inproceedings{EisenblaetterKochMartinetal.2003, author = {Eisenbl{\"a}tter, Andreas and Koch, Thorsten and Martin, Alexander and Achterberg, Tobias and F{\"u}genschuh, Armin and Koster, Arie M.C.A. and Wegel, Oliver and Wess{\"a}ly, Roland}, title = {Modelling Feasible Network Configurations for UMTS}, series = {Telecommunications Network Design and Management}, booktitle = {Telecommunications Network Design and Management}, editor = {Anandalingam, G. and Raghavan, S.}, publisher = {Kluver}, year = {2003}, language = {en} } @article{Koch2004, author = {Koch, Thorsten}, title = {The final NETLIB-LP results}, series = {Operations Research Letters}, volume = {32}, journal = {Operations Research Letters}, number = {2}, publisher = {Elsevier / North-Holland}, doi = {10.1016/S0167-6377(03)00094-4}, pages = {138 -- 142}, year = {2004}, language = {en} } @inproceedings{EisenblaetterFuegenschuhGeerdesetal.2003, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Geerdes, Hans-Florian and Junglas, Daniel and Koch, Thorsten and Martin, Alexander}, title = {Optimisation Methods for UMTS Radio Network Planning}, series = {Operation Research Proceedings 2003}, booktitle = {Operation Research Proceedings 2003}, editor = {Ahr, Dino and Fahrion, Roland and Oswald, Marcus and Reinelt, Gerhard}, publisher = {Springer}, doi = {10.1007/978-3-642-17022-5_5}, pages = {31 -- 38}, year = {2003}, language = {en} } @inproceedings{BleyKochWessaely2004, author = {Bley, Andreas and Koch, Thorsten and Wess{\"a}ly, Roland}, title = {Large-Scale hierarchical networks: How to compute an optimal architecture?}, series = {Networks 2004}, booktitle = {Networks 2004}, editor = {Kaindl, H.}, publisher = {VDE Verlag}, address = {Berlin}, isbn = {3-8007-2840-0}, pages = {429 -- 434}, year = {2004}, language = {en} } @article{AbboudGroetschelKoch2008, author = {Abboud, Nadine and Gr{\"o}tschel, Martin and Koch, Thorsten}, title = {Mathematical methods for physical layout of printed circuit boards: an overview}, series = {OR Spectrum}, volume = {30}, journal = {OR Spectrum}, number = {3}, doi = {10.1007/s00291-007-0080-9}, pages = {453 -- 468}, year = {2008}, language = {en} } @inproceedings{KochWessaely2004, author = {Koch, Thorsten and Wess{\"a}ly, Roland}, title = {Hierarchical Infrastructure Planning in Networks}, series = {Proceedings of the 3rd Conference on Applied Infrastructure Research, 9. October 2004, Berlin}, booktitle = {Proceedings of the 3rd Conference on Applied Infrastructure Research, 9. October 2004, Berlin}, editor = {Elmer, Carl-Friedrich and von Hirschhausen, Christian}, year = {2004}, language = {en} } @phdthesis{Koch2004, author = {Koch, Thorsten}, title = {Rapid Mathematical Programming}, year = {2004}, language = {en} } @article{AchterbergKochMartin2005, author = {Achterberg, Tobias and Koch, Thorsten and Martin, Alexander}, title = {Branching Rules Revisited}, series = {Operations Research Letters}, volume = {33}, journal = {Operations Research Letters}, number = {1}, publisher = {Elsevier / North-Holland}, doi = {10.1016/j.orl.2004.04.002}, pages = {42 -- 54}, year = {2005}, language = {en} } @article{EisenblaetterGeerdesKochetal.2005, author = {Eisenbl{\"a}tter, Andreas and Geerdes, Hans-Florian and Koch, Thorsten and Martin, Alexander and Wess{\"a}ly, Roland}, title = {UMTS Radio Network Evaluation and Optimization beyond Snapshots}, series = {Mathematical Methods of Operations Research}, volume = {63}, journal = {Mathematical Methods of Operations Research}, number = {1}, doi = {10.1007/s00186-005-0002-z}, pages = {1 -- 29}, year = {2005}, language = {en} } @article{Koch2006, author = {Koch, Thorsten}, title = {Mathematische Programmierung auf der {\"U}berholspur}, series = {OR News}, journal = {OR News}, number = {26}, pages = {36 -- 37}, year = {2006}, language = {en} } @article{AchterbergKochMartin2006, author = {Achterberg, Tobias and Koch, Thorsten and Martin, Alexander}, title = {MIPLIB 2003}, series = {Operations Research Letters}, volume = {34}, journal = {Operations Research Letters}, number = {4}, publisher = {Elsevier / North-Holland}, doi = {10.1016/j.orl.2005.07.009}, pages = {361 -- 372}, year = {2006}, language = {en} } @article{KaibelKoch2006, author = {Kaibel, Volker and Koch, Thorsten}, title = {Mathematik f{\"u}r den Volkssport}, series = {Mitteilungen der DMV}, volume = {14}, journal = {Mitteilungen der DMV}, number = {2}, pages = {93 -- 96}, year = {2006}, language = {en} } @inproceedings{Koch2006, author = {Koch, Thorsten}, title = {Rapid Mathematical Programming or How to Solve Sudoku Puzzles in a few Seconds}, series = {Operations Research Proceedings 2005}, booktitle = {Operations Research Proceedings 2005}, editor = {Haasis, Hans-Dietrich and Kopfer, Herbert and Sch{\"o}nberger, J{\"o}rn}, pages = {21 -- 26}, year = {2006}, language = {en} } @article{FroylandKochMegowetal.2008, author = {Froyland, Gary and Koch, Thorsten and Megow, Nicole and Duane, Emily and Wren, Howard}, title = {Optimizing the Landside Operation of a Container Terminal}, series = {OR Spectrum}, volume = {30}, journal = {OR Spectrum}, number = {1}, doi = {10.1007/s00291-007-0082-7}, pages = {53 -- 75}, year = {2008}, language = {en} } @inproceedings{AchterbergBertholdKochetal.2008, author = {Achterberg, Tobias and Berthold, Timo and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: A New Approach to Integrate CP and MIP}, series = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008}, volume = {5015}, booktitle = {Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 5th International Conference, CPAIOR 2008}, editor = {Perron, Laurent and Trick, Michael}, publisher = {Springer}, doi = {10.1007/978-3-540-68155-7_4}, pages = {6 -- 20}, year = {2008}, language = {en} } @techreport{EisenblaetterGeerdesKochetal.2003, author = {Eisenbl{\"a}tter, Andreas and Geerdes, Hans-Florian and Koch, Thorsten and T{\"u}rke, Ulrich}, title = {Describing UMTS Radio Networks using XML}, publisher = {MOMENTUM}, year = {2003}, language = {en} } @techreport{EisenblaetterGeerdesKochetal.2003, author = {Eisenbl{\"a}tter, Andreas and Geerdes, Hans-Florian and Koch, Thorsten and T{\"u}rke, Ulrich}, title = {MOMENTUM Public Planning Scenarios and their XML Format}, number = {TD(03) 167}, publisher = {COST 273}, address = {Prague, Czech Republic}, year = {2003}, language = {en} } @article{EisenblaetterFuegenschuhFledderusetal.2003, author = {Eisenbl{\"a}tter, Andreas and F{\"u}genschuh, Armin and Fledderus, E. and Geerdes, Hans-Florian and Heideck, B. and Junglas, Daniel and Koch, Thorsten and K{\"u}rner, T. and Martin, Alexander}, title = {Mathematical Methods for Automatic Optimization of UMTS Radio Networks}, number = {D4.3}, editor = {Martin, Alexander}, publisher = {IST-2000-28088 MOMENTUM}, year = {2003}, language = {en} } @article{EisenblaetterGeerdesJunglasetal.2003, author = {Eisenbl{\"a}tter, Andreas and Geerdes, Hans-Florian and Junglas, Daniel and Koch, Thorsten and K{\"u}rner, T. and Martin, Alexander}, title = {Final Report on Automatic Planning and Optimisation}, number = {D4.7}, publisher = {IST-2000-28088 MOMENTUM}, year = {2003}, language = {en} } @misc{Koch2011, author = {Koch, Thorsten}, title = {Which mixed integer programs could a million CPUs solve?}, series = {CPAIOR 2011 - Late Breaking Abstracts}, journal = {CPAIOR 2011 - Late Breaking Abstracts}, number = {11-20}, editor = {Achterberg, Tobias and Beck, J. Christopher}, publisher = {Zuse Institute Berlin}, address = {Takustr. 7, Berlin}, pages = {17 -- 18}, year = {2011}, language = {en} } @incollection{GroetschelKochHoang2010, author = {Gr{\"o}tschel, Martin and Koch, Thorsten and Hoang, Nam-Dung}, title = {Lagenwechsel minimieren - oder das Bohren von L{\"o}chern in Leiterplatten}, series = {Besser als Mathe}, booktitle = {Besser als Mathe}, editor = {Biermann, Katja and Gr{\"o}tschel, Martin and Lutz-Westphal, Brigitte}, publisher = {Vieweg+Teubner}, doi = {10.1007/978-3-658-01004-1_19}, pages = {161 -- 174}, year = {2010}, language = {en} } @misc{BertholdGleixnerHeinzetal., author = {Berthold, Timo and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {SCIP Optimization Suite を利用した 混合整数(線形/非線形) 計画問題の解法}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15598}, abstract = {この論文ではソフトウェア・パッケージSCIP Optimization Suite を紹介し,その3つの構成要素:モデリン グ言語Zimpl, 線形計画(LP: linear programming) ソルバSoPlex, そして,制約整数計画(CIP: constraint integer programming) に対するソフトウェア・フレームワークSCIP, について述べる.本論文では,この3つの 構成要素を利用して,どのようにして挑戦的な混合整数線形計画問題(MIP: mixed integer linear optimization problems) や混合整数非線形計画問題(MINLP: mixed integer nonlinear optimization problems) をモデル化 し解くのかを説明する.SCIP は,現在,最も高速なMIP,MINLP ソルバの1つである.いくつかの例により, Zimpl, SCIP, SoPlex の利用方法を示すとともに,利用可能なインタフェースの概要を示す.最後に,将来の開 発計画の概要について述べる.}, language = {ja} } @misc{BertholdGamrathGleixneretal., author = {Berthold, Timo and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Koch, Thorsten and Shinano, Yuji}, title = {Solving mixed integer linear and nonlinear problems using the SCIP Optimization Suite}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15654}, abstract = {This paper introduces the SCIP Optimization Suite and discusses the capabilities of its three components: the modeling language Zimpl, the linear programming solver SoPlex, and the constraint integer programming framework SCIP. We explain how these can be used in concert to model and solve challenging mixed integer linear and nonlinear optimization problems. SCIP is currently one of the fastest non-commercial MIP and MINLP solvers. We demonstrate the usage of Zimpl, SCIP, and SoPlex by selected examples, we give an overview of available interfaces, and outline plans for future development.}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, series = {Proc. of 30th IEEE International Parallel \& Distributed Processing Symposium}, booktitle = {Proc. of 30th IEEE International Parallel \& Distributed Processing Symposium}, doi = {10.1109/IPDPS.2016.56}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @incollection{KochPfetschRoevekamp, author = {Koch, Thorsten and Pfetsch, Marc and R{\"o}vekamp, Jessica}, title = {Introduction}, series = {Evaluating Gas Network Capacities}, booktitle = {Evaluating Gas Network Capacities}, publisher = {Society for Industrial and Applied Mathematics}, isbn = {9781611973686}, pages = {3 -- 16}, language = {en} } @incollection{BargmannEbbersHeineckeetal., author = {Bargmann, Dagmar and Ebbers, Mirko and Heinecke, Nina and Koch, Thorsten and K{\"u}hl, Veronika and Pelzer, Antje and Pfetsch, Marc and R{\"o}vekamp, Jessica and Spreckelsen, Klaus}, title = {State-of-the-art in evaluating gas network capacities}, series = {Evaluating Gas Network Capacities}, booktitle = {Evaluating Gas Network Capacities}, publisher = {Society for Industrial and Applied Mathematics}, isbn = {9781611973686}, pages = {65 -- 84}, language = {en} } @incollection{ScheweKochMartinetal., author = {Schewe, Lars and Koch, Thorsten and Martin, Alexander and Pfetsch, Marc}, title = {Mathematical optimization for evaluating gas network capacities}, series = {Evaluating Gas Network Capacities}, booktitle = {Evaluating Gas Network Capacities}, publisher = {Society for Industrial and Applied Mathematics}, isbn = {9781611973686}, pages = {87 -- 102}, language = {en} } @article{GamrathKochMartinetal., author = {Gamrath, Gerald and Koch, Thorsten and Martin, Alexander and Miltenberger, Matthias and Weninger, Dieter}, title = {Progress in presolving for mixed integer programming}, series = {Mathematical Programming Computation}, volume = {7}, journal = {Mathematical Programming Computation}, number = {4}, doi = {10.1007/s12532-015-0083-5}, pages = {367 -- 398}, abstract = {This paper describes three presolving techniques for solving mixed integer programming problems (MIPs) that were implemented in the academic MIP solver SCIP. The task of presolving is to reduce the problem size and strengthen the formulation, mainly by eliminating redundant information and exploiting problem structures. The first method fixes continuous singleton columns and extends results known from duality fixing. The second analyzes and exploits pairwise dominance relations between variables, whereas the third detects isolated subproblems and solves them independently. The performance of the presented techniques is demonstrated on two MIP test sets. One contains all benchmark instances from the last three MIPLIB versions, while the other consists of real-world supply chain management problems. The computational results show that the combination of all three presolving techniques almost halves the solving time for the considered supply chain management problems. For the MIPLIB instances we obtain a speedup of 20 \% on affected instances while not degrading the performance on the remaining problems.}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Hard MIPLIP2003 Problems with ParaSCIP on Supercomputers: An Update}, series = {IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel \& Distributed Processing Symposium Workshops}, booktitle = {IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel \& Distributed Processing Symposium Workshops}, editor = {IEEE,}, publisher = {IEEE Computer Society}, address = {Washington, DC, USA}, isbn = {978-1-4799-4117-9}, doi = {10.1109/IPDPSW.2014.174}, pages = {1552 -- 1561}, language = {en} } @misc{KochGriebelSoellneretal., author = {Koch, Thorsten and Griebel, Rolf and S{\"o}llner, Konstanze and Christof, J{\"u}rgen and Bertelmann, Roland}, title = {DeepGreen - Entwicklung eines rechtssicheren Workflows zur effizienten Umsetzung der Open-Access-Komponente in den Allianz-Lizenzen f{\"u}r die Wissenschaft}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56799}, pages = {22}, abstract = {In Deutschland wurden 2011 wichtige Akzente f{\"u}r die Umsetzung des Gr{\"u}nen Wegs der Open-Access-Bewegung gesetzt: Mit finanzieller Unterst{\"u}tzung der Deutschen Forschungsgemeinschaft (DFG) haben Bibliotheken sogenannte Allianz-Lizenzen mit Verlagen verhandelt, in denen weitreichende Rechte hinsichtlich der Open-Access-Archivierung verankert sind. Autorinnen und Autoren zugriffsberechtigter Einrichtungen k{\"o}nnen ihre Artikel, die in diesen lizenzierten Zeitschriften erschienen sind, ohne oder mit nur kurzer Embargofrist in geeigneten Repositorien ihrer Wahl frei zug{\"a}nglich machen. Allerdings macht der Kreis berechtigter Autorinnen und Autoren nur sehr z{\"o}gerlich von seinen Open-Access-Rechten Gebrauch. Auch die Bibliotheken - als Betreiber der Repositorien und damit Vertreter f{\"u}r die berechtigten Autorinnen und Autoren - nutzen dieses Recht nur unzureichend. Mit DeepGreen verfolgen die Antragssteller das Ziel, einen Großteil jener Publikationen, die unter den speziell im DFG-gef{\"o}rderten Kontext verhandelten Bedingungen gr{\"u}n online gehen d{\"u}rften, auch tats{\"a}chlich online abrufbar zu machen. Im Rahmen des Projektes wird prototypisch mit Allianzverlagen und berechtigten Bibliotheken ein m{\"o}glichst stark automatisierter Workflow entwickelt, in dem rechtssichere Verlagsdaten inklusive der Volltexte abgeliefert und von Repositorien eingespielt werden. Ein technischer Baustein ist dabei ein intermedi{\"a}res Repositorium, das als Datenverteiler dient. Das nationale Projektkonsortium besteht aus den zwei Bibliotheksverb{\"u}nden Kooperativer Bibliotheksverbund Berlin-Brandenburg (KOBV) und Bibliotheksverbund Bayern (BVB), den zwei Universit{\"a}tsbibliotheken der Friedrich-Alexander-Universit{\"a}t Erlangen-N{\"u}rnberg (FAU) und der Technische Universit{\"a}t Berlin (TU Berlin), zus{\"a}tzlich die Bayerische Staatsbibliothek (BSB) und eine außeruniversit{\"a}re Forschungseinrichtung - das Helmholtz Open Science Koordinationsb{\"u}ro am Deutschen GeoForschungsZentrum (GFZ). Das Projekt startet zum 01. Januar 2016. Hier vorliegend finden Sie den Projektantrag zum Nachlesen.}, language = {de} } @article{AlbrechtCeynowaDegkwitzetal., author = {Albrecht, Rita and Ceynowa, Klaus and Degkwitz, Andreas and Kende, Jiri and Koch, Thorsten and Messmer, Gabriele and Risch, Uwe and Rusch, Beate and Scheuerl, Robert and Voß, Michael}, title = {Cloudbasierte Infrastruktur f{\"u}r Bibliotheksdaten - auf dem Weg zu einer Neuordnung der deutschen Verbundlandschaft}, series = {Bibliothek Forschung und Praxis}, volume = {37}, journal = {Bibliothek Forschung und Praxis}, number = {3}, doi = {10.1515/bfp-2013-0044}, pages = {279 -- 287}, abstract = {Im Oktober 2012 hatte die Deutsche Forschungsgemeinschaft (DFG) ein F{\"o}rderprogramm zur Neuausrichtung {\"u}berregionaler Informationsservices ausgeschrieben, um eine umfassende Reorganisation bestehender Infrastrukturen anzustoßen, die mit den Empfehlungen des Wissenschaftsrates zur Zukunft der bibliothekarischen Verbundsysteme in Deutschland gefordert wurde. Im Themenfeld „Bibliotheksdateninfrastruktur und Lokale Systeme" der DFG-Ausschreibung wurde das vom Hessischen Bibliotheksinformationssystem (HeBIS), vom Bibliotheksverbund Bayern (BVB) und vom Kooperativen Bibliotheksverbund Berlin-Brandenburg (KOBV) beantragte Vorhaben „Cloudbasierte Infrastruktur f{\"u}r Bibliotheksdaten" (CIB) bewilligt. Das Projekt zielt auf die {\"U}berf{\"u}hrung bibliothekarischer Workflows und Dienste in cloudbasierte Arbeitsumgebungen und die sukzessive Abl{\"o}sung traditioneller Verbund- und Lokalsysteme durch internationale Systemplattformen. Zu den Arbeitspaketen des Vorhabens geh{\"o}rt u. a. die Einbindung von Norm- und Fremddatenangeboten und von weiteren Services in diese Plattformen.}, language = {de} } @incollection{HumpolaFuegenschuhHilleretal., author = {Humpola, Jesco and F{\"u}genschuh, Armin and Hiller, Benjamin and Koch, Thorsten and Lehmann, Thomas and Lenz, Ralf and Schwarz, Robert and Schweiger, Jonas}, title = {The Specialized MINLP Approach}, series = {Evaluating Gas Network Capacities}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, abstract = {We propose an approach to solve the validation of nominations problem using mixed-integer nonlinear programming (MINLP) methods. Our approach handles both the discrete settings and the nonlinear aspects of gas physics. Our main contribution is an innovative coupling of mixed-integer (linear) programming (MILP) methods with nonlinear programming (NLP) that exploits the special structure of a suitable approximation of gas physics, resulting in a global optimization method for this type of problem.}, language = {en} } @incollection{HaynHumpolaKochetal., author = {Hayn, Christine and Humpola, Jesco and Koch, Thorsten and Schewe, Lars and Schweiger, Jonas and Spreckelsen, Klaus}, title = {Perspectives}, series = {Evaluating Gas Network Capacities}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, abstract = {After we discussed approaches to validate nominations and to verify bookings, we consider possible future research paths. This includes determining technical capacities and planning of network extensions.}, language = {en} } @incollection{GotzesHeineckeHilleretal., author = {Gotzes, Uwe and Heinecke, Nina and Hiller, Benjamin and R{\"o}vekamp, Jessica and Koch, Thorsten}, title = {Regulatory rules for gas markets in Germany and other European countries}, series = {Evaluating gas network capacities}, booktitle = {Evaluating gas network capacities}, publisher = {Society for Industrial and Applied Mathematics}, isbn = {978-1-611973-68-6}, pages = {45 -- 64}, language = {en} } @article{HumpolaFuegenschuhKoch, author = {Humpola, Jesco and F{\"u}genschuh, Armin and Koch, Thorsten}, title = {Valid inequalities for the topology optimization problem in gas network design}, series = {OR Spectrum}, volume = {38}, journal = {OR Spectrum}, number = {3}, publisher = {Springer}, address = {Berlin Heidelberg}, doi = {https://doi.org/10.1007/s00291-015-0390-2}, pages = {597 -- 631}, abstract = {One quarter of Europe's energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euro per km extending the European pipeline network is already a multi-billion Euro business. Therefore, automatic planning tools that support the decision process are desired. Unfortunately, current mathematical methods are not capable of solving the arising network design problems due to their size and complexity. In this article, we will show how to apply optimization methods that can converge to a proven global optimal solution. By introducing a new class of valid inequalities that improve the relaxation of our mixed-integer nonlinear programming model, we are able to speed up the necessary computations substantially.}, language = {en} } @inproceedings{ShinanoRehfeldtKoch, author = {Shinano, Yuji and Rehfeldt, Daniel and Koch, Thorsten}, title = {Building Optimal Steiner Trees on Supercomputers by Using up to 43,000 Cores}, series = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019}, volume = {11494}, booktitle = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_35}, pages = {529 -- 539}, abstract = {SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively parallel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best-known solutions to instances from the benchmark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been considerably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB.}, language = {en} } @misc{HoppmannHenningsLenzetal., author = {Hoppmann, Kai and Hennings, Felix and Lenz, Ralf and Gotzes, Uwe and Heinecke, Nina and Spreckelsen, Klaus and Koch, Thorsten}, title = {Optimal Operation of Transient Gas Transport Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73639}, language = {en} } @misc{RehfeldtHobbieSchoenheitetal., author = {Rehfeldt, Daniel and Hobbie, Hannes and Sch{\"o}nheit, David and Gleixner, Ambros and Koch, Thorsten and M{\"o}st, Dominik}, title = {A massively parallel interior-point solver for linear energy system models with block structure}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74321}, abstract = {Linear energy system models are often a crucial component of system design and operations, as well as energy policy consulting. Such models can lead to large-scale linear programs, which can be intractable even for state-of-the-art commercial solvers|already the available memory on a desktop machine might not be sufficient. Against this backdrop, this article introduces an interior-point solver that exploits common structures of linear energy system models to efficiently run in parallel on distributed memory systems. The solver is designed for linear programs with doubly bordered block-diagonal constraint matrix and makes use of a Schur complement based decomposition. Special effort has been put into handling large numbers of linking constraints and variables as commonly observed in energy system models. In order to handle this strong linkage, a distributed preconditioning of the Schur complement is used. In addition, the solver features a number of more generic techniques such as parallel matrix scaling and structure-preserving presolving. The implementation is based on the existing parallel interior-point solver PIPS-IPM. We evaluate the computational performance on energy system models with up to 700 million non-zero entries in the constraint matrix, and with more than 200 million columns and 250 million rows. This article mainly concentrates on the energy system model ELMOD, which is a linear optimization model representing the European electricity markets by the use of a nodal pricing market clearing. It has been widely applied in the literature on energy system analyses during the recent years. However, it will be demonstrated that the new solver is also applicable to other energy system models.}, language = {en} } @inproceedings{GleixnerKempkeKochetal., author = {Gleixner, Ambros and Kempke, Nils-Christian and Koch, Thorsten and Rehfeldt, Daniel and Uslu, Svenja}, title = {First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, edition = {1}, publisher = {Springer International Publishing}, doi = {10.1007/978-3-030-48439-2_13}, pages = {105 -- 111}, abstract = {In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix.}, language = {en} } @misc{GleixnerKempkeKochetal., author = {Gleixner, Ambros and Kempke, Nils-Christian and Koch, Thorsten and Rehfeldt, Daniel and Uslu, Svenja}, title = {First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method}, issn = {1438-0064}, doi = {10.1007/978-3-030-48439-2_13}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74084}, abstract = {In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix.}, language = {en} } @article{BreuerBussieckFiandetal., author = {Breuer, Thomas and Bussieck, Michael and Fiand, Frederik and Cao, Karl-Ki{\^e}n and Gils, Hans Christian and Wetzel, Manuel and Gleixner, Ambros and Koch, Thorsten and Rehfeldt, Daniel and Khabi, Dmitry}, title = {BEAM-ME: Ein interdisziplin{\"a}rer Beitrag zur Erreichung der Klimaziele}, series = {OR-News : das Magazin der GOR}, journal = {OR-News : das Magazin der GOR}, number = {66}, pages = {6 -- 8}, language = {de} } @misc{AustConradRempelDegkwitzetal., author = {Aust, Sonja and Conrad-Rempel, Steffi and Degkwitz, Andreas and Golz, Bettina and Hasler, Tim and Heiss, Alexandra and Keidel, Petra and Koch, Thorsten and Kuberek, Monika and Lill, Monika and Lohrum, Stefan and M{\"u}ller, Anja and Peters-Kottig, Wolfgang and Quitzsch, Nicole and Rusch, Beate and Schwidder, Jens and Sischke, Gabriele and Stanek, Ursula and Taylor, Viola and Weihe, Signe and Wyrwol, Christiane and Happel, Hans-Gerd}, title = {KOBV Jahresbericht 2013-2014}, volume = {2013-2014}, number = {2013-2014}, organization = {Kooperativer Bibliotheksverbund Berlin-Brandenburg (KOBV)}, issn = {0934-5892}, pages = {1 -- 56}, abstract = {Der KOBV-Jahresbericht informiert r{\"u}ckblickend im 2-Jahres-Rhythmus {\"u}ber die bibliothekarisch-fachlichen Entwicklungen im Verbund und die Projekte des Kooperativen Bibliotheksverbunds Berlin-Brandenburg (KOBV).}, language = {de} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {On the exact solution of prize-collecting Steiner tree problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78174}, language = {en} } @article{GleixnerHendelGamrathetal., author = {Gleixner, Ambros and Hendel, Gregor and Gamrath, Gerald and Achterberg, Tobias and Bastubbe, Michael and Berthold, Timo and Christophel, Philipp M. and Jarck, Kati and Koch, Thorsten and Linderoth, Jeff and L{\"u}bbecke, Marco and Mittelmann, Hans and Ozyurt, Derya and Ralphs, Ted and Salvagnin, Domenico and Shinano, Yuji}, title = {MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library}, series = {Mathematical Programming Computation}, volume = {13}, journal = {Mathematical Programming Computation}, number = {3}, doi = {10.1007/s12532-020-00194-3}, pages = {443 -- 490}, abstract = {We report on the selection process leading to the sixth version of the Mixed Integer Programming Library. Selected from an initial pool of over 5,000 instances, the new MIPLIB 2017 collection consists of 1,065 instances. A subset of 240 instances was specially selected for benchmarking solver performance. For the first time, the compilation of these sets was done using a data-driven selection process supported by the solution of a sequence of mixed integer optimization problems, which encoded requirements on diversity and balancedness with respect to instance features and performance data.}, language = {en} } @article{GamrathGleixnerKochetal., author = {Gamrath, Gerald and Gleixner, Ambros and Koch, Thorsten and Miltenberger, Matthias and Kniasew, Dimitri and Schl{\"o}gel, Dominik and Martin, Alexander and Weninger, Dieter}, title = {Tackling Industrial-Scale Supply Chain Problems by Mixed-Integer Programming}, series = {Journal of Computational Mathematics}, volume = {37}, journal = {Journal of Computational Mathematics}, doi = {10.4208/jcm.1905-m2019-0055}, pages = {866 -- 888}, abstract = {The modeling flexibility and the optimality guarantees provided by mixed-integer programming greatly aid the design of robust and future-proof decision support systems. The complexity of industrial-scale supply chain optimization, however, often poses limits to the application of general mixed-integer programming solvers. In this paper we describe algorithmic innovations that help to ensure that MIP solver performance matches the complexity of the large supply chain problems and tight time limits encountered in practice. Our computational evaluation is based on a diverse set, modeling real-world scenarios supplied by our industry partner SAP.}, language = {en} } @misc{RehfeldtFranzKoch, author = {Rehfeldt, Daniel and Franz, Henriette and Koch, Thorsten}, title = {Optimal Connected Subgraphs: Formulations and Algorithms}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79094}, language = {en} } @misc{YuekselErguenZittelWangetal., author = {Yueksel-Erguen, Inci and Zittel, Janina and Wang, Ying and Hennings, Felix and Koch, Thorsten}, title = {Lessons learned from gas network data preprocessing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78262}, abstract = {The German high-pressure natural gas transport network consists of thousands of interconnected elements spread over more than 120,000 km of pipelines built during the last 100 years. During the last decade, we have spent many person-years to extract consistent data out of the available sources, both public and private. Based on two case studies, we present some of the challenges we encountered. Preparing consistent, high-quality data is surprisingly hard, and the effort necessary can hardly be overestimated. Thus, it is particularly important to decide which strategy regarding data curation to adopt. Which precision of the data is necessary? When is it more efficient to work with data that is just sufficiently correct on average? In the case studies we describe our experiences and the strategies we adopted to deal with the obstacles and to minimize future effort. Finally, we would like to emphasize that well-compiled data sets, publicly available for research purposes, provide the grounds for building innovative algorithmic solutions to the challenges of the future.}, language = {en} } @misc{PetkovicKochZittel, author = {Petkovic, Milena and Koch, Thorsten and Zittel, Janina}, title = {Deep learning for spatio-temporal supply and demand forecasting in natural gas transmission networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81221}, abstract = {Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21\$\\%\$. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness.}, language = {en} } @article{LeKoch, author = {Le, Thi Thai and Koch, Thorsten}, title = {Instability of a tangential discontinuity surface in a three-dimensional compressible medium}, series = {Physics of Fluids}, volume = {33}, journal = {Physics of Fluids}, number = {1}, doi = {10.1063/5.0033753}, pages = {016106}, abstract = {Compressible flows appear in many natural and technological processes, for instance, the flow of natural gases in a pipe system. Thus, a detailed study of the stability of tangential velocity discontinuity in compressible media is relevant and necessary. The first early investigation in two-dimensional (2D) media was given more than 70 years ago. In this article, we continue investigating the stability in three-dimensional (3D) media. The idealized statement of this problem in an infinite spatial space was studied by Syrovatskii in 1954. However, the omission of the absolute sign of cos θ with θ being the angle between vectors of velocity and wave number in a certain inequality produced the inaccurate conclusion that the flow is always unstable for entire values of the Mach number M. First, we revisit this case to arrive at the correct conclusion, namely that the discontinuity surface is stabilized for a large Mach number with a given value of the angle θ. Next, we introduce a real finite spatial system such that it is bounded by solid walls along the flow direction. We show that the discontinuity surface is stable if and only if the dispersion relation equation has only real roots, with a large value of the Mach number; otherwise, the surface is always unstable. In particular, we show that a smaller critical value of the Mach number is required to make the flow in a narrow channel stable.}, language = {en} } @article{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {On the exact solution of prize-collecting Steiner tree problems}, series = {INFORMS Journal on Computing}, journal = {INFORMS Journal on Computing}, doi = {10.1287/ijoc.2021.1087}, language = {en} } @inproceedings{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Implications, conflicts, and reductions for Steiner trees}, series = {Integer Programming and Combinatorial Optimization: 22th International Conference, IPCO 2021}, booktitle = {Integer Programming and Combinatorial Optimization: 22th International Conference, IPCO 2021}, doi = {10.1007/978-3-030-73879-2_33}, pages = {473 -- 487}, language = {en} } @article{HoppmannBaumHenningsZitteletal., author = {Hoppmann-Baum, Kai and Hennings, Felix and Zittel, Janina and Gotzes, Uwe and Spreckelsen, Eva-Maria and Spreckelsen, Klaus and Koch, Thorsten}, title = {An Optimization Approach for the Transient Control of Hydrogen Transport Networks}, series = {Mathematical Methods of Operations Research}, journal = {Mathematical Methods of Operations Research}, number = {Special Issue on Energy Networks}, language = {en} } @incollection{KochRehfeldtShinano, author = {Koch, Thorsten and Rehfeldt, Daniel and Shinano, Yuji}, title = {An exact high performance solver for Steiner tree problems in graphs and related problems}, series = {Modeling, Simulation and Optimization of Complex Processes HPSC 2018}, booktitle = {Modeling, Simulation and Optimization of Complex Processes HPSC 2018}, publisher = {Springer}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Implications, conflicts, and reductions for Steiner trees}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-80039}, language = {en} } @incollection{HoppmannBaumMexiBurdakovetal., author = {Hoppmann-Baum, Kai and Mexi, Gioni and Burdakov, Oleg and Casselgren, Carl Johan and Koch, Thorsten}, title = {Minimum Cycle Partition with Length Requirements}, series = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research}, volume = {12296}, booktitle = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research}, editor = {Hebrard, Emmanuel and Musliu, Nysret}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-030-58941-7}, doi = {10.1007/978-3-030-58942-4_18}, pages = {273 -- 282}, abstract = {In this article we introduce a Minimum Cycle Partition Problem with Length Requirements (CPLR). This generalization of the Travelling Salesman Problem (TSP) originates from routing Unmanned Aerial Vehicles (UAVs). Apart from nonnegative edge weights, CPLR has an individual critical weight value associated with each vertex. A cycle partition, i.e., a vertex disjoint cycle cover, is regarded as a feasible solution if the length of each cycle, which is the sum of the weights of its edges, is not greater than the critical weight of each of its vertices. The goal is to find a feasible partition, which minimizes the number of cycles. In this article, a heuristic algorithm is presented together with a Mixed Integer Programming (MIP) formulation of CPLR. We furthermore introduce a conflict graph, whose cliques yield valid constraints for the MIP model. Finally, we report on computational experiments conducted on TSPLIB-based test instances.}, language = {en} } @article{HoppmannBaumHenningsLenzetal.2020, author = {Hoppmann-Baum, Kai and Hennings, Felix and Lenz, Ralf and Gotzes, Uwe and Heinecke, Nina and Spreckelsen, Klaus and Koch, Thorsten}, title = {Optimal Operation of Transient Gas Transport Networks}, series = {Optimization and Engineering}, volume = {22}, journal = {Optimization and Engineering}, doi = {10.1007/s11081-020-09584-x}, pages = {735 -- 781}, year = {2020}, abstract = {In this paper, we describe an algorithmic framework for the optimal operation of transient gas transport networks consisting of a hierarchical MILP formulation together with a sequential linear programming inspired post-processing routine. Its implementation is part of the KOMPASS decision support system, which is currently used in an industrial setting. Real-world gas transport networks are controlled by operating complex pipeline intersection areas, which comprise multiple compressor units, regulators, and valves. In the following, we introduce the concept of network stations to model them. Thereby, we represent the technical capabilities of a station by hand-tailored artificial arcs and add them to network. Furthermore, we choose from a predefined set of flow directions for each network station and time step, which determines where the gas enters and leaves the station. Additionally, we have to select a supported simple state, which consists of two subsets of artificial arcs: Arcs that must and arcs that cannot be used. The goal is to determine a stable control of the network satisfying all supplies and demands. The pipeline intersections, that are represented by the network stations, were initially built centuries ago. Subsequently, due to updates, changes, and extensions, they evolved into highly complex and involved topologies. To extract their basic properties and to model them using computer-readable and optimizable descriptions took several years of effort. To support the dispatchers in controlling the network, we need to compute a continuously updated list of recommended measures. Our motivation for the model presented here is to make fast decisions on important transient global control parameters, i.e., how to route the flow and where to compress the gas. Detailed continuous and discrete technical control measures realizing them, which take all hardware details into account, are determined in a subsequent step. In this paper, we present computational results from the KOMPASS project using detailed real-world data.}, language = {en} } @misc{HoppmannBaumHenningsZitteletal., author = {Hoppmann-Baum, Kai and Hennings, Felix and Zittel, Janina and Gotzes, Uwe and Spreckelsen, Eva-Maria and Spreckelsen, Klaus and Koch, Thorsten}, title = {From Natural Gas towards Hydrogen - A Feasibility Study on Current Transport Network Infrastructure and its Technical Control}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79901}, abstract = {This study examines the usability of a real-world, large-scale natural gas transport infrastructure for hydrogen transport. We investigate whether a converted network can transport the amounts of hydrogen necessary to satisfy current energy demands. After introducing an optimization model for the robust transient control of hydrogen networks, we conduct computational experiments based on real-world demand scenarios. Using a representative network, we demonstrate that replacing each turbo compressor unit by four parallel hydrogen compressors, each of them comprising multiple serial compression stages, and imposing stricter rules regarding the balancing of in- and outflow suffices to realize transport in a majority of scenarios. However, due to the reduced linepack there is an increased need for technical and non-technical measures leading to a more dynamic network control. Furthermore, the amount of energy needed for compression increases by 364\% on average.}, language = {en} } @misc{HoppmannBaumMexiBurdakovetal., author = {Hoppmann-Baum, Kai and Mexi, Gioni and Burdakov, Oleg and Casselgren, Carl Johan and Koch, Thorsten}, title = {Length-Constrained Cycle Partition with an Application to UAV Routing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-80489}, abstract = {In this article, we discuss the Length-Constrained Cycle Partition Problem (LCCP). Besides edge weights, the undirected graph in LCCP features an individual critical weight value for each vertex. A cycle partition, i.e., a vertex disjoint cycle cover, is a feasible solution if the length of each cycle is not greater than the critical weight of each of the vertices in the cycle. The goal is to find a feasible partition with the minimum number of cycles. In this article, we discuss theoretical properties, preprocessing techniques, and two mixed-integer programming models (MIP) for LCCP both inspired by formulations for the closely related Travelling Salesperson Problem (TSP). Further, we introduce conflict hypergraphs, whose cliques yield valid constraints for the MIP models. We conclude with a report on computational experiments conducted on (A)TSPLIB-based instances. As an example, we use a routing problem in which a fleet of uncrewed aerial vehicles (UAVs) patrols a set of areas.}, language = {en} } @misc{RalphsShinanoBertholdetal., author = {Ralphs, Ted and Shinano, Yuji and Berthold, Timo and Koch, Thorsten}, title = {Parallel Solvers for Mixed Integer Linear Optimization}, series = {Handbook of Parallel Constraint Reasoning}, journal = {Handbook of Parallel Constraint Reasoning}, editor = {Hamadi, Youssef}, publisher = {Springer Nature}, doi = {10.1007/978-3-319-63516-3_8}, pages = {283 -- 336}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Reduction-based exact solution of prize-collecting Steiner tree problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-70958}, language = {en} } @misc{KochCeynowaSoellneretal., author = {Koch, Thorsten and Ceynowa, Klaus and S{\"o}llner, Konstanze and Christof, J{\"u}rgen and Bertelmann, Roland}, title = {DeepGreen - Open Access Transformation Etablierung und Weiterentwicklung rechtssicherer Workflows zur effizienten Umsetzung von Open-Access-Komponenten in Lizenzvereinbarungen f{\"u}r wissenschaftliche Publikationen}, issn = {1438-0064}, doi = {10.12752/3.dg.6961}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69612}, pages = {17}, abstract = {F{\"u}r den geforderten - und von der Deutschen Forschungsgemeinschaft (DFG) gef{\"o}rderten - Open-Access-Transformationsprozess der deutschen, wissenschaftlichen Publikationslandschaft braucht es neue Formen der Zusammenarbeit zwischen Wissenschaft und Verlagen. Bereits seit 2011 wurden mit Unterst{\"u}tzung seitens der DFG in Deutschland die sogenannten Allianz-Lizenzen zwischen Bibliotheken und Verlagen verhandelt, in denen weitreichende Rechte hinsichtlich der Open-Access-Archivierung verankert sind: Autorinnen und Autoren aber auch die sie vertretenden Einrichtungen d{\"u}rfen Artikel, die in lizenzierten Zeitschriften erschienen sind, ohne oder mit nur kurzer Embargofrist in geeigneten Repositorien ihrer Wahl frei zug{\"a}nglich machen. Aufbauend auf diese Open-Access-Komponenten zeigt das DFG-gef{\"o}rderte Projekt „DeepGreen" ein m{\"o}gliches neues Modell der Zusammenarbeit mit Verlagen auf: DeepGreen setzt auf die automatisierte Verteilung von Artikeldaten von Verlagen an Repositorien und will disziplin{\"u}bergreifend einen Großteil jener wissenschaftlichen Publikationen aus Fachzeitschriften, die unter lizenzrechtlichen Kontexten frei zug{\"a}nglich online gehen d{\"u}rften, auch tats{\"a}chlich online abrufbar machen. Erprobte DeepGreen von 2016 bis Ende 2017 prototypisch die Machbarkeit der Zielstellung, will das Projekt in der zweiten Projektphase (2018-2020) den (m{\"o}glichst stark) automatisierten Workflow gemeinsam mit Verlagen, berechtigten Bibliotheken und anderen Einrichtungen etablieren. Technischer Baustein ist eine zentrale, intermedi{\"a}re Datenverteilstation, die die automatische und rechtssichere Ablieferung von Metadaten inklusive der Volltexte aus Verlagshand direkt an dazu berechtigte institutionelle Repositorien gew{\"a}hrleistet. Erreicht werden soll ein bundesweiter Service, der auf verbindlichen Absprachen mit Verlagen und Bibliotheken fußt und (zun{\"a}chst) die Bedingungen der Allianz-Lizenzen umsetzt. Gleichzeitig wird die {\"U}bertragbarkeit des DeepGreen-Ansatzes auf weitere Lizenzkontexte (FID-Lizenzen, Konsortiallizenzen, Gold-Open-Access-Vereinbarungen) gepr{\"u}ft. Eine zus{\"a}tzliche Ausbaustufe stellt die {\"U}berlegung zur automatisierten Ablieferung an Fachrepositorien und Forschungsinformationssysteme dar, die ebenfalls geplant wird. Das nationale Projektkonsortium besteht aus den zwei Bibliotheksverb{\"u}nden Kooperativer Bibliotheksverbund Berlin-Brandenburg (KOBV) und Bibliotheksverbund Bayern (BVB), zwei Universit{\"a}tsbibliotheken, der Friedrich-Alexander-Universit{\"a}t Erlangen-N{\"u}rnberg (FAU) und der Technische Universit{\"a}t Berlin (TU Berlin), zus{\"a}tzlich der Bayerischen Staatsbibliothek (BSB) und einer außeruniversit{\"a}ren Forschungseinrichtung - dem Helmholtz Open Science Koordinationsb{\"u}ro am Deutschen GeoForschungsZentrum (GFZ). Das Folgeprojekt beginnt am 01. August 2018. Hier vorliegend finden Sie den Projektantrag zum Nachlesen.}, language = {de} } @misc{HillerKochScheweetal., author = {Hiller, Benjamin and Koch, Thorsten and Schewe, Lars and Schwarz, Robert and Schweiger, Jonas}, title = {A System to Evaluate Gas Network Capacities: Concepts and Implementation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-67438}, abstract = {In 2005 the European Union liberalized the gas market with a disruptive change and decoupled trading of natural gas from its transport. The gas is now transported by independent so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer the maximum possible capacities at each entry and exit such that any resulting gas flow can be realized by the network. The revenue from selling these capacities more than one billion Euro in Germany alone, but overestimating the capacity might compromise the security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This is a report on a large project in mathematical optimization, set out to develop a new toolset for evaluating gas network capacities. The goals and the challenges as they occurred in the project are described, as well as the developments and design decisions taken to meet the requirements.}, language = {en} } @inproceedings{BreuerBussieckCaoetal., author = {Breuer, Thomas and Bussieck, Michael and Cao, Karl-Kien and Cebulla, Felix and Fiand, Frederik and Gils, Hans Christian and Gleixner, Ambros and Khabi, Dmitry and Koch, Thorsten and Rehfeldt, Daniel and Wetzel, Manuel}, title = {Optimizing Large-Scale Linear Energy System Problems with Block Diagonal Structure by Using Parallel Interior-Point Methods}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer International Publishing}, doi = {10.1007/978-3-319-89920-6_85}, pages = {641 -- 647}, abstract = {Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described.}, language = {en} } @article{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Combining NP-Hard Reduction Techniques and Strong Heuristics in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem}, series = {SIAM Journal on Optimization}, volume = {29}, journal = {SIAM Journal on Optimization}, number = {1}, publisher = {Society for Industrial and Applied Mathematics}, doi = {10.1137/17M1145963}, pages = {369 -- 398}, abstract = {Borne out of a surprising variety of practical applications, the maximum-weight connected subgraph problem has attracted considerable interest during the past years. This interest has not only led to notable research on theoretical properties, but has also brought about several (exact) solvers-with steadily increasing performance. Continuing along this path, the following article introduces several new algorithms such as reduction techniques and heuristics and describes their integration into an exact solver. The new methods are evaluated with respect to both their theoretical and practical properties. Notably, the new exact framework allows to solve common problem instances from the literature faster than all previous approaches. Moreover, one large-scale benchmark instance from the 11th DIMACS Challenge can be solved for the first time to optimality and the primal-dual gap for two other ones can be significantly reduced.}, language = {en} } @article{HillerKochScheweetal., author = {Hiller, Benjamin and Koch, Thorsten and Schewe, Lars and Schwarz, Robert and Schweiger, Jonas}, title = {A System to Evaluate Gas Network Capacities: Concepts and Implementation}, series = {European Journal of Operational Research}, volume = {270}, journal = {European Journal of Operational Research}, number = {3}, pages = {797 -- 808}, abstract = {In 2005 the European Union liberalized the gas market with a disruptive change and decoupled trading of natural gas from its transport. The gas is now trans- ported by independent so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer the maximum possible capacities at each entry and exit such that any resulting gas flow can be realized by the network. The revenue from selling these capacities more than one billion Euro in Germany alone, but overestimating the capacity might compromise the security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This is a report on a large project in mathematical optimization, set out to develop a new toolset for evaluating gas network capacities. The goals and the challenges as they occurred in the project are described, as well as the developments and design decisions taken to meet the requirements.}, language = {en} } @inproceedings{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {SCIP-Jack—a solver for STP and variants with parallelization extensions: An update}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, pages = {191 -- 196}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. Although the different Steiner tree problem variants are usually strongly related, solution approaches employed so far have been prevalently problem-specific. Against this backdrop, the solver SCIP-Jack was created as a general-purpose framework that can be used to solve the classical Steiner tree problem and 11 of its variants. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. Furthermore, SCIP-Jack includes various newly developed algorithmic components such as preprocessing routines and heuristics. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. After the introduction of SCIP-Jack at the 2014 DIMACS Challenge on Steiner problems, the overall performance of the solver has considerably improved. This article provides an overview on the current state.}, language = {en} } @article{LeKoch, author = {Le, Thi Thai and Koch, Thorsten}, title = {Interface stability of compressible fluids in porous media}, series = {Physics of Fluids}, volume = {33}, journal = {Physics of Fluids}, number = {8}, publisher = {AIP Publishing}, doi = {10.1063/5.0059336}, pages = {084102}, abstract = {The stability of flows in porous media plays a vital role in transiting energy supply from natural gas to hydrogen, especially for estimating the usability of existing underground gas storage infrastructures. Thus, this research aims to analyze the interface stability of the tangential-velocity discontinuity between two compressible gases by using Darcy's model to include the porosity effect. The results shown in this research will be a basis for considering whether underground gas storages in porous material can be used to store hydrogen. We show the relation between the Mach number M, the viscosity \mu, and the porosity \epsilon on the stability of the interface. This interface stability affects gases' withdrawal and injection processes, thus will help us to determine the velocity which with gas can be extracted and injected into the storage effectively. By imposing solid walls along the flow direction, the critical values of these parameters regarding the stability of the interface are smaller than when considering no walls. The consideration of bounded flows approaches the problem more realistically. In particular, this analysis plays a vital role when considering two-dimensional gas flows in storages and pipes.}, language = {en} } @article{PetkovicKochZittel, author = {Petkovic, Milena and Koch, Thorsten and Zittel, Janina}, title = {Deep learning for spatio-temporal supply anddemand forecasting in natural gas transmission networks}, series = {Energy Science and Engineering}, journal = {Energy Science and Engineering}, doi = {https://doi.org/10.1002/ese3.932}, abstract = {Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21\%. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness.}, language = {en} } @article{BertholdKochShinano2021, author = {Berthold, Timo and Koch, Thorsten and Shinano, Yuji}, title = {MILP. Try. Repeat.}, series = {Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021}, volume = {2}, journal = {Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2021}, year = {2021}, language = {en} } @misc{RehfeldtKochShinano, author = {Rehfeldt, Daniel and Koch, Thorsten and Shinano, Yuji}, title = {Faster exact solution of sparse MaxCut and QUBO problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85715}, language = {en} } @misc{TurnerKochSerranoetal., author = {Turner, Mark and Koch, Thorsten and Serrano, Felipe and Winkler, Michael}, title = {Adaptive Cut Selection in Mixed-Integer Linear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86055}, abstract = {Cut selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP.}, language = {en} } @article{PetkovicChenGamrathetal., author = {Petkovic, Milena and Chen, Ying and Gamrath, Inken and Gotzes, Uwe and Hadjidimitrou, Natalia Selini and Zittel, Janina and Xu, Xiaofei and Koch, Thorsten}, title = {A hybrid approach for high precision prediction of gas flows}, series = {Energy Systems}, volume = {13}, journal = {Energy Systems}, doi = {10.1007/s12667-021-00466-4}, pages = {383 -- 408}, abstract = {About 23\% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition ("Energiewende"). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes.}, language = {en} } @article{RehfeldtFranzKoch, author = {Rehfeldt, Daniel and Franz, Henriette and Koch, Thorsten}, title = {Optimal Connected Subgraphs: Integer Programming Formulations and Polyhedra}, series = {Networks}, volume = {80}, journal = {Networks}, number = {3}, publisher = {Wiley}, doi = {10.1002/net.22101}, pages = {314 -- 332}, language = {en} } @misc{PedersenHoppmannBaumZitteletal., author = {Pedersen, Jaap and Hoppmann-Baum, Kai and Zittel, Janina and Koch, Thorsten}, title = {Blending hydrogen into natural gas: An assessment of the capacity of the German gas grid; Technical Report}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82838}, abstract = {In the transition towards a pure hydrogen infrastructure, utilizing the existing natural gas infrastructure is a necessity. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length.}, language = {en} } @misc{BertelmannKochCeynowaetal., author = {Bertelmann, Roland and Koch, Thorsten and Ceynowa, Klaus and S{\"o}llner, Konstanze and Christof, J{\"u}rgen and Rusch, Beate and Sch{\"a}ffler, Hildegard and Putnings, Markus and Pampel, Heinz and Kuberek, Monika and Boltze, Julia and Lohrum, Stefan and Retter, Regina and H{\"o}llerl, Annika and Faensen, Katja and Steffen, Ronald and Gross, Matthias and Hoffmann, Cornelia and Haoua, Marsa}, title = {DeepGreen: Etablierung und Weiterentwicklung rechtssicherer Workflows zur effizienten Umsetzung von Open-Access-Komponenten in Lizenzvereinbarungen f{\"u}r wissenschaftliche Publikationen - Abschlussbericht}, issn = {1438-0064}, doi = {10.12752/8542}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85420}, abstract = {DeepGreen wurde vom 01.08.2018 bis zum 30.06.2021 in einer zweiten Projektphase von der Deutschen Forschungsgemeinschaft (DFG) gef{\"o}rdert. DeepGreen unterst{\"u}tzt Bibliotheken als Dienstleister f{\"u}r Hochschulen, außeruniversit{\"a}re Forschungseinrichtungen und die dort t{\"a}tigen Wissenschaftler:innen dabei, Publikationen auf Open-Access-Repositorien frei zug{\"a}nglich zu machen und f{\"o}rdert das Zusammenspiel von wissenschaftlichen Einrichtungen und Verlagen. An der zweiten Projektphase waren der Kooperative Bibliotheksverbund Berlin-Brandenburg, die Bayerische Staatsbibliothek, der Bibliotheksverbund Bayern, die Universit{\"a}tsbibliotheken der Friedrich-Alexander-Universit{\"a}t Erlangen-N{\"u}rnberg und der Technischen Universit{\"a}t Berlin und das Helmholtz Open Science Office beteiligt. In dem Projekt wurde erfolgreich eine technische und organisatorische L{\"o}sung zur automatisierten Verteilung von Artikeldaten wissenschaftlicher Verlage an institutionelle und fachliche Repositorien entwickelt. In der zweiten Projektphase lag der Fokus auf der Erprobung der Datendrehscheibe in der Praxis und der Ausweitung auf weitere Datenabnehmer und weitere Verlage. Im Anschluss an die DFG-gef{\"o}rderte Projektlaufzeit ist DeepGreen in einen zweij{\"a}hrigen Pilotbetrieb {\"u}bergegangen. Ziel des Pilotbetriebs ist es, den {\"U}bergang in einen bundesweiten Real-Betrieb vorzubereiten.}, language = {de} } @misc{KochBertholdPedersenetal., author = {Koch, Thorsten and Berthold, Timo and Pedersen, Jaap and Vanaret, Charlie}, title = {Progress in Mathematical Programming Solvers from 2001 to 2020}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82779}, abstract = {This study investigates the progress made in LP and MILP solver performance during the last two decades by comparing the solver software from the beginning of the millennium with the codes available today. On average, we found out that for solving LP/MILP, computer hardware got about 20 times faster, and the algorithms improved by a factor of about nine for LP and around 50 for MILP, which gives a total speed-up of about 180 and 1,000 times, respectively. However, these numbers have a very high variance and they considerably underestimate the progress made on the algorithmic side: many problem instances can nowadays be solved within seconds, which the old codes are not able to solve within any reasonable time.}, language = {en} } @misc{PfetschFuegenschuhGeissleretal., author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, issn = {1438-0064}, doi = {10.1080/10556788.2014.888426}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16531}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously.}, language = {en} } @misc{HillerKochScheweetal., author = {Hiller, Benjamin and Koch, Thorsten and Schewe, Lars and Schwarz, Robert and Schweiger, Jonas}, title = {A System to Evaluate Gas Network Capacities: Concepts and Implementation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61931}, abstract = {Since 2005, the gas market in the European Union is liberalized and the trading of natural gas is decoupled from its transport. The transport is done by so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer maximum independent capacities at each entry and exit such that the resulting gas flows can be realized by the network without compromising security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This paper gives an overview of the toolset for evaluating gas network capacities that has been developed within the ForNe project, a joint research project of seven research partners initiated by Open Grid Europe, Germany's biggest TSO. While most of the relevant mathematics is described in the book "Evaluating Gas Network Capacities", this article sketches the system as a whole, describes some developments that have taken place recently, and gives some details about the current implementation.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving hard MIPLIB2003 problems with ParaSCIP on Supercomputers: An update}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42888}, abstract = {Contemporary supercomputers can easily provide years of CPU time per wall-clock hour. One challenge of today's software development is how to harness this wast computing power in order to solve really hard mixed integer programming instances. In 2010, two out of six open MIPLIB2003 instances could be solved by ParaSCIP in more than ten consecutive runs, restarting from checkpointing files. The contribution of this paper is threefold: For the first time, we present computational results of single runs for those two instances. Secondly, we provide new improved upper and lower bounds for all of the remaining four open MIPLIB2003 instances. Finally, we explain which new developments led to these results and discuss the current progress of ParaSCIP. Experiments were conducted on HLRNII, on HLRN III, and on the Titan supercomputer, using up to 35,200 cores.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78393}, abstract = {Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper, we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{CookKochSteffyetal., author = {Cook, William and Koch, Thorsten and Steffy, Daniel and Wolter, Kati}, title = {An Exact Rational Mixed-Integer Programming Solver}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12329}, number = {11-07}, abstract = {We present an exact rational solver for mixed-integer linear programming that avoids the numerical inaccuracies inherent in the floating-point computations used by existing software. This allows the solver to be used for establishing theoretical results and in applications where correct solutions are critical due to legal and financial consequences. Our solver is a hybrid symbolic/numeric implementation of LP-based branch-and-bound, using numerically-safe methods for all binding computations in the search tree. Computing provably accurate solutions by dynamically choosing the fastest of several safe dual bounding methods depending on the structure of the instance, our exact solver is only moderately slower than an inexact floating-point branch-and-bound solver. The software is incorporated into the SCIP optimization framework, using the exact LP solver QSopt_ex and the GMP arithmetic library. Computational results are presented for a suite of test instances taken from the MIPLIB and Mittelmann collections.}, language = {en} } @misc{MartinGeisslerHaynetal., author = {Martin, Alexander and Geißler, Bj{\"o}rn and Hayn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15121}, abstract = {Die mittel- und l{\"a}ngerfristige Planung f{\"u}r den Gastransport hat sich durch {\"A}nderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazit{\"a}t und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und L{\"o}sungsans{\"a}tze skizziert.}, language = {de} } @misc{GamrathKochRehfeldtetal., author = {Gamrath, Gerald and Koch, Thorsten and Rehfeldt, Daniel and Shinano, Yuji}, title = {SCIP-Jack - A massively parallel STP solver}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-52293}, abstract = {In this article we describe the impact from embedding a 15 year old model for solving the Steiner tree problem in graphs in a state-of-the-art MIP-Framework, making the result run in a massively parallel environment and extending the model to solve as many variants as possible. We end up with a high-perfomance solver that is capable of solving previously unsolved instances and, in contrast to its predecessor, is freely available for academic research.}, language = {en} } @misc{GamrathKochMartinetal., author = {Gamrath, Gerald and Koch, Thorsten and Martin, Alexander and Miltenberger, Matthias and Weninger, Dieter}, title = {Progress in Presolving for Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/s12532-015-0083-5}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42530}, abstract = {Presolving attempts to eliminate redundant information from the problem formulation and simultaneously tries to strengthen the formulation. It can be very effective and is often essential for solving instances. Especially for mixed integer programming problems, fast and effective presolving algorithms are very important. In this paper, we report on three new presolving techniques. The first method searches for singleton continuous columns and tries to fix the corresponding variables. Then we present a presolving technique which exploits a partial order of the variables to induce fixings. Finally, we show an approach based on connected components in graphs. Our computational results confirm the profitable use of the algorithms in practice.}, language = {en} } @misc{BertholdHendelKoch, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {The Three Phases of MIP Solving}, issn = {1438-0064}, doi = {10.1080/10556788.2017.1392519}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61607}, abstract = {Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, issn = {1438-0064}, doi = {10.1109/IPDPS.2016.56}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56404}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{ShinanoRehfeldtKoch, author = {Shinano, Yuji and Rehfeldt, Daniel and Koch, Thorsten}, title = {Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71118}, abstract = {SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB.}, language = {en} } @misc{BreuerBussieckCaoetal., author = {Breuer, Thomas and Bussieck, Michael and Cao, Karl-Kien and Cebulla, Felix and Fiand, Frederik and Gils, Hans Christian and Gleixner, Ambros and Khabi, Dmitry and Koch, Thorsten and Rehfeldt, Daniel and Wetzel, Manuel}, title = {Optimizing Large-Scale Linear Energy System Problems with Block Diagonal Structure by Using Parallel Interior-Point Methods}, issn = {1438-0064}, doi = {10.1007/978-3-319-89920-6_85}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66183}, abstract = {Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described.}, language = {en} } @inproceedings{PedersenHoppmannBaumZitteletal., author = {Pedersen, Jaap and Hoppmann-Baum, Kai and Zittel, Janina and Koch, Thorsten}, title = {Blending hydrogen into natural gas: An assessment of the capacity of the German gas grid}, series = {Operations Research Proceedings 2021}, booktitle = {Operations Research Proceedings 2021}, doi = {https://doi.org/10.1007/978-3-031-08623-6_28}, pages = {182 -- 187}, abstract = {In the transition towards a pure hydrogen infrastructure, repurposing the existing natural gas infrastructure is considered. In this study, the maximal technically feasible injection of hydrogen into the existing German natural gas transmission network is analysed with respect to regulatory limits regarding the gas quality. We propose a transient tracking model based on the general pooling problem including linepack. The analysis is conducted using real-world hourly gas flow data on a network of about 10,000 km length.}, language = {en} } @article{HoppmannBaumBurdakovMexietal., author = {Hoppmann-Baum, Kai and Burdakov, Oleg and Mexi, Gioni and Casselgren, Carl Johan and Koch, Thorsten}, title = {Length-Constrained Cycle Partition with an Application to UAV Routing}, series = {Optimization Methods and Software}, journal = {Optimization Methods and Software}, doi = {10.1080/10556788.2022.2053972}, abstract = {This article discusses the Length-Constrained Cycle Partition Problem (LCCP), which constitutes a new generalization of the Travelling Salesperson Problem (TSP). Apart from nonnegative edge weights, the undirected graph in LCCP features a nonnegative critical length parameter for each vertex. A cycle partition, i.e., a vertex-disjoint cycle cover, is a feasible solution for LCCP if the length of each cycle is not greater than the critical length of each vertex contained in it. The goal is to find a feasible partition having a minimum number of cycles. Besides analyzing theoretical properties and developing preprocessing techniques, we propose an elaborate heuristic algorithm that produces solutions of good quality even for large-size instances. Moreover, we present two exact mixed-integer programming formulations (MIPs) for LCCP, which are inspired by well-known modeling approaches for TSP. Further, we introduce the concept of conflict hypergraphs, whose cliques yield valid constraints for the MIP models. We conclude with a discussion on computational experiments that we conducted using (A)TSPLIB-based problem instances. As a motivating example application, we describe a routing problem where a fleet of uncrewed aerial vehicles (UAVs) must patrol a given set of areas.}, language = {en} } @misc{GamrathKochMaheretal., author = {Gamrath, Gerald and Koch, Thorsten and Maher, Stephen J. and Rehfeldt, Daniel and Shinano, Yuji}, title = {SCIP-Jack - A solver for STP and variants with parallelization extensions}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-54648}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem specific. In contrast, this paper introduces a general purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This is achieved by transforming various problem variants into a general form and solving them using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.}, language = {en} } @misc{BeckerBertelmannCeynowaetal., author = {Becker, Pascal-Nicolas and Bertelmann, Roland and Ceynowa, Klaus and Christof, J{\"u}rgen and Dierkes, Thomas and Goltz-Fellgiebel, Julia Alexandra and Groß, Matthias and Heidrich, Regina and H{\"o}hnow, Tobias and Kassube, Michael and Koch, Thorsten and Kuberek, Monika and Landes, Lilian and Pampel, Heinz and Putnings, Markus and Rusch, Beate and Sch{\"a}ffler, Hildegard and Schobert, Dagmar and Schwab, Oliver and Schwidder, Jens and S{\"o}llner, Konstanze and Stoyanova, Tonka and Vierkant, Paul}, title = {DeepGreen - Metadata Schema for the exchange of publications between publishers and open access repositories. Version 1.1. June 2016}, issn = {1438-0064}, doi = {10.12752/3.dg.1.0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-59580}, abstract = {In 2011, important priorities were set to realize green publications in the open access movement in Germany. With financial support from the German Research Foundation (DFG), libraries negotiated Alliance licenses with publishers that guarantee extensive open access rights. Authors of institutions, that have therewith access to licensed journals, can freely publish their articles immediately or after a short embargo period in a repository of their choice. However, authors hesitantly use these open access rights. Also libraries - as managers of institutional and subject based repositories and thus legitimated representatives for the authors - only rarely make use of these rights. The aim of DeepGreen is to make the majority of those publications available online. Together with publishers of the Alliance licenses, the project consortium wants to develop a nearly fully automated workflow that covers both the delivery of data, including the full texts, of the publishers, as well as the data transformation to the necessary import formats and the loading process into the repositories. An intermediate "publication router" will serve as a distribution platform. The DeepGreen metadata schema contains metadata properties describing a wide range of deliverable bibliographic metadata from the Alliance license publishers (most common standards are JATS and CrossRef XML) as well as its compliance with technical, quality and metadata standards of the repositories. The schema includes required metadata elements and optional properties providing additional information.The metadata schema is aligned to the OCLC repository best practices ("Best Practices for CONTENTdm and other OAI-PMH compliant repositories: creating sharable metadata", URL: http://www.oclc.org/content/dam/support/wcdigitalcollectiongateway/MetadataBestPractices.pdf). The current version of the schema is subject to changes as the functional requirements and workflow practices are evolving during the project experiences and prototype production.}, language = {en} } @misc{ChristofConradRempelDegkwitzetal., author = {Christof, J{\"u}rgen and Conrad-Rempel, Steffi and Degkwitz, Andreas and Goltz-Fellgiebel, Julia Alexandra and Happel, Hans-Gerd and Hasler, Tim and Heiss, Alexandra and Kaminsky, Uta and Kant, Oliver and Kende, Jiř{\´i} and Koch, Thorsten and Kuberek, Monika and Lohrum, Stefan and M{\"u}ller, Anja and Mutter, Moritz and Peters-Kottig, Wolfgang and Quitzsch, Nicole and Rusch, Beate and Schwidder, Jens and Stanek, Ursula and Weihe, Signe and Zeyns, Andrea}, title = {KOBV Jahresbericht 2015-2016}, volume = {2015-2016}, number = {2015-2016}, organization = {Kooperativer Bibliotheksverbund Berlin-Brandenburg (KOBV)}, issn = {0934-5892}, pages = {1 -- 64}, abstract = {Der KOBV-Jahresbericht informiert r{\"u}ckblickend im 2-Jahres-Rhythmus {\"u}ber die bibliothekarisch-fachlichen Entwicklungen im Verbund und die Projekte des Kooperativen Bibliotheksverbunds Berlin-Brandenburg (KOBV).}, language = {de} } @misc{BehrensBertelmannBoltzeetal., author = {Behrens, Kathrin and Bertelmann, Roland and Boltze, Julia and Ceynowa, Klaus and Christof, J{\"u}rgen and Dierkes, Thomas and Goltz-Fellgiebel, Julia Alexandra and Groß, Matthias and Hammerl, Michaela and Haoua, Marsa and Heermann, Petra and Hoffmann, Cornelia and H{\"o}hnow, Tobias and Koch, Thorsten and Kuberek, Monika and Pampel, Heinz and Putnings, Markus and Rusch, Beate and Sch{\"a}ffler, Hildegard and Schwidder, Jens and S{\"o}llner, Konstanze and Staub, Hedda and Wannick, Eike}, title = {DeepGreen - Open Access Transformation: Eine Handreichung f{\"u}r institutionelle Repositorien}, issn = {1438-0064}, doi = {10.12752/7443}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74438}, abstract = {Mit dem DFG-gef{\"o}rderten Projekt DeepGreen soll eine automatisierte, rechtssichere L{\"o}sung entwickelt werden, um Artikeldaten von wissenschaftlichen Verlagen abzuholen und anschließend, nach Ablauf etwaiger lizenzrechtlicher Embargofristen, an berechtigte Repositorien zu verteilen und somit in den Open Access zu {\"u}berf{\"u}hren. Dabei liegt der Fokus auf den DFG-gef{\"o}rderten und {\"u}berregional verhandelten Allianz-Lizenzen, mit spezieller Open-Access-Komponente. Die vorliegende Handreichung richtet sich speziell an die Betreiber institutioneller Repositorien und stellt Empfehlungen und einen Workflow bereit, um eine erfolgreiche Ver{\"o}ffentlichung, der durch die DeepGreen-Datendrehscheibe zugeordneten Artikel, zu erm{\"o}glichen. Die Handreichung basiert auf den bisherigen Erfahrungen der DeepGreen-Projektbeteiligten.}, language = {de} } @misc{BeckerBertelmannCeynowaetal., author = {Becker, Pascal-Nicolas and Bertelmann, Roland and Ceynowa, Klaus and Christof, J{\"u}rgen and Dierkes, Thomas and Goltz-Fellgiebel, Julia Alexandra and Groß, Matthias and Heidrich, Regina and H{\"o}hnow, Tobias and Kassube, Michael and Koch, Thorsten and Kuberek, Monika and Landes, Lilian and Pampel, Heinz and Putnings, Markus and Rusch, Beate and Sch{\"a}ffler, Hildegard and Schobert, Dagmar and Schwab, Oliver and Schwidder, Jens and S{\"o}llner, Konstanze and Stoyanova, Tonka and Vierkant, Paul}, title = {Questionnaire for effective exchange of bibliographic metadata - current status of publishing houses}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60419}, abstract = {The project DeepGreen aims to realise better usage of green open access publication rights with regard to Alliance Licenses in Germany (https://www.nationallizenzen.de/open-access). Together with publishers who offer Alliance Licenses and authorized libraries, the project group intends to develop a prototype of a nearly fully automated workflow that covers the delivery of data from the publishers, including the article full texts, as well as the process of loading data into the institutional repositories of licensees. Further information about the project can be found within ZIB-Report 15-58, urn:nbn:de:0297-zib-56799. In order to become acquainted with publishers' processes for exchanging documents and metadata, the project group developed a questionnaire for an online survey. The publishing of this questionnaire is intended to demonstrate relevant aspects of the issue (e. g. methods of data exchange, protocols and interfaces) and to foster reuse of valuable questionnaire elements. The XML-file can be reused as a template, the PDF-file reproduces the original survey layout.}, subject = {Open Access}, language = {en} } @article{LeKoch, author = {Le, Thi Thai and Koch, Thorsten}, title = {Viscosity and porosity effects on tangential-discontinuity surface stability in 3D Compressible Media}, series = {Physics of Fluids}, volume = {34}, journal = {Physics of Fluids}, number = {7}, publisher = {AIP Publishing}, doi = {10.1063/5.0095970}, abstract = {The stability of a flow in porous media relates to the velocity rate of injecting and withdrawing natural gases inside porous storage. We thus aim to analyze the stability of flows in porous media to accelerate the energy transition process. This research examines a flow model of a tangential--velocity discontinuity with porosity and viscosity changes in a three-dimensional (3D) compressible medium because of a co-existence of different gases in a storage. The fluids are assumed to move in a relative motion where the plane y=0 is a tangential-velocity discontinuity surface. We obtain that the critical value of the Mach number to stabilize a tangential discontinuity surface of flows via porous media is smaller than the one of flows in a plane. The critical value of the Mach number M to stabilize a discontinuity surface of the 3D flow is different by a factor |cosθ| compared to the two-dimensional (2D) flow. Here, θ is the angle between velocity and wavenumber vectors. Our results also show that the flow model with viscosity and porosity effects is stable faster than those without these terms. Our analysis is done for both infinite and finite flows. The effect of solid walls along the flow direction could suppress the instability, i.e., the tangential-discontinuity surface is stabilized faster}, language = {en} } @misc{PedersenLeKochetal., author = {Pedersen, Jaap and Le, Thi Thai and Koch, Thorsten and Zittel, Janina}, title = {Optimal discrete pipe sizing for tree-shaped CO2 networks}, issn = {1438-0064}, abstract = {While energy-intensive industries like the steel industry plan to switch to renewable energy sources, other industries, such as the cement industry, have to rely on carbon capture storage and utilization technologies to reduce the inevitable carbon dioxide (CO2) emissions of their production processes. In this context, we investigate the problem of finding optimal pipeline diameters from a discrete set of diameters for a tree-shaped network transporting captured CO2 from multiple sources to a single sink. The general problem of optimizing arc capacities in potential-based fluid networks is a challenging mixed-integer nonlinear program. Additionally, the behaviour of CO2 is highly sensitive and nonlinear regarding temperature and pressure changes. We propose an iterative algorithm splitting the problem into two parts: a) the pipe-sizing problem under a fixed supply scenario and temperature distribution and b) the thermophysical modelling including mixing effects, the Joule-Thomson effect, and heat exchange with the surrounding environment. We show the effectiveness of our approach by applying our algorithm to a real-world network planning problem for a CO2 network in Western Germany.}, language = {en} } @article{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Implications, Conflicts, and Reductions for Steiner Trees}, series = {Mathematical Programming}, volume = {197}, journal = {Mathematical Programming}, publisher = {Springer}, doi = {10.1007/s10107-021-01757-5}, pages = {903 -- 966}, language = {en} } @article{KochBertholdPedersenetal., author = {Koch, Thorsten and Berthold, Timo and Pedersen, Jaap and Vanaret, Charlie}, title = {Progress in mathematical programming solvers from 2001 to 2020}, series = {EURO Journal on Computational Optimization}, volume = {10}, journal = {EURO Journal on Computational Optimization}, doi = {10.1016/j.ejco.2022.100031}, pages = {100031}, abstract = {This study investigates the progress made in lp and milp solver performance during the last two decades by comparing the solver software from the beginning of the millennium with the codes available today. On average, we found out that for solving lp/milp, computer hardware got about 20 times faster, and the algorithms improved by a factor of about nine for lp and around 50 for milp, which gives a total speed-up of about 180 and 1,000 times, respectively. However, these numbers have a very high variance and they considerably underestimate the progress made on the algorithmic side: many problem instances can nowadays be solved within seconds, which the old codes are not able to solve within any reasonable time.}, language = {en} } @misc{ChenKochXu, author = {Chen, Ying and Koch, Thorsten and Xu, Xiaofei}, title = {Regularized partially functional autoregressive model with application to high-resolution natural gas forecasting in Germany}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74880}, abstract = {We propose a partially functional autoregressive model with exogenous variables (pFAR) to describe the dynamic evolution of the serially correlated functional data. It provides a unit� ed framework to model both the temporal dependence on multiple lagged functional covariates and the causal relation with ultrahigh-dimensional exogenous scalar covariates. Estimation is conducted under a two-layer sparsity assumption, where only a few groups and elements are supposed to be active, yet without knowing their number and location in advance. We establish asymptotic properties of the estimator and investigate its unite sample performance along with simulation studies. We demonstrate the application of pFAR with the high-resolution natural gas flows in Germany, where the pFAR model provides insightful interpretation as well as good out-of-sample forecast accuracy.}, language = {en} } @article{ChenKochZakiyevaetal., author = {Chen, Ying and Koch, Thorsten and Zakiyeva, Nazgul and Liu, Kailiang and Xu, Zhitong and Chen, Chun-houh and Nakano, Junji and Honda, Keisuke}, title = {Article's scientific prestige: Measuring the impact of individual articles in the web of science}, series = {Journal of Informetrics}, volume = {17}, journal = {Journal of Informetrics}, number = {1}, doi = {10.1016/j.joi.2023.101379}, pages = {101379}, abstract = {We performed a citation analysis on the Web of Science publications consisting of more than 63 million articles and 1.45 billion citations on 254 subjects from 1981 to 2020. We proposed the Article's Scientific Prestige (ASP) metric and compared this metric to number of citations (\#Cit) and journal grade in measuring the scientific impact of individual articles in the large-scale hierarchical and multi-disciplined citation network. In contrast to \#Cit, ASP, that is computed based on the eigenvector centrality, considers both direct and indirect citations, and provides steady-state evaluation cross different disciplines. We found that ASP and \#Cit are not aligned for most articles, with a growing mismatch amongst the less cited articles. While both metrics are reliable for evaluating the prestige of articles such as Nobel Prize winning articles, ASP tends to provide more persuasive rankings than \#Cit when the articles are not highly cited. The journal grade, that is eventually determined by a few highly cited articles, is unable to properly reflect the scientific impact of individual articles. The number of references and coauthors are less relevant to scientific impact, but subjects do make a difference.}, language = {en} } @article{XuChenZhangetal., author = {Xu, Xiaofei and Chen, Ying and Zhang, Ge and Koch, Thorsten}, title = {Modeling functional time series and mixed-type predictors with partially functional autoregressions*}, series = {Journal of Business and Economic Statistics}, journal = {Journal of Business and Economic Statistics}, doi = {10.1080/07350015.2021.2011299}, pages = {1 -- 43}, abstract = {In many business and economics studies, researchers have sought to measure the dynamic dependence of curves with high-dimensional mixed-type predictors. We propose a partially functional autoregressive model (pFAR) where the serial dependence of curves is controlled by coefficient operators that are defined on a two-dimensional surface, and the individual and group effects of mixed-type predictors are estimated with a two-layer regularization. We develop an efficient estimation with the proven asymptotic properties of consistency and sparsity. We show how to choose the sieve and tuning parameters in regularization based on a forward-looking criterion. In addition to the asymptotic properties, numerical validation suggests that the dependence structure is accurately detected. The implementation of the pFAR within a real-world analysis of dependence in German daily natural gas flow curves, with seven lagged curves and 85 scalar predictors, produces superior forecast accuracy and an insightful understanding of the dynamics of natural gas supply and demand for the municipal, industry, and border nodes, respectively.}, language = {en} } @misc{RehfeldtFujisawaKochetal., author = {Rehfeldt, Daniel and Fujisawa, Katsuki and Koch, Thorsten and Nakao, Masahiro and Shinano, Yuji}, title = {Computing single-source shortest paths on graphs with over 8 trillion edges}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88180}, abstract = {This paper introduces an implementation for solving the single-source shortest path problem on distributed-memory machines. It is tailored to power-law graphs and scales to trillions of edges. The new implementation reached 2nd and 10th place in the latest Graph500 benchmark in June 2022 and handled the largest and second-largest graphs among all participants.}, language = {en} } @misc{GamrathKochMaheretal., author = {Gamrath, Gerald and Koch, Thorsten and Maher, Stephen J. and Rehfeldt, Daniel and Shinano, Yuji}, title = {SCIP-Jack - A solver for STP and variants with parallelization extensions}, issn = {1438-0064}, doi = {10.1007/s12532-016-0114-x}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60170}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.}, language = {en} } @misc{RehfeldtKochMaher, author = {Rehfeldt, Daniel and Koch, Thorsten and Maher, Stephen J.}, title = {Reduction Techniques for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem}, issn = {1438-0064}, doi = {10.1002/net.21857}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60420}, abstract = {The concept of reduction has frequently distinguished itself as a pivotal ingredient of exact solving approaches for the Steiner tree problem in graphs. In this paper we broaden the focus and consider reduction techniques for three Steiner problem variants that have been extensively discussed in the literature and entail various practical applications: The prize-collecting Steiner tree problem, the rooted prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem. By introducing and subsequently deploying numerous new reduction methods, we are able to drastically decrease the size of a large number of benchmark instances, already solving more than 90 percent of them to optimality. Furthermore, we demonstrate the impact of these techniques on exact solving, using the example of the state-of-the-art Steiner problem solver SCIP-Jack.}, language = {en} } @article{GamrathKochMaheretal., author = {Gamrath, Gerald and Koch, Thorsten and Maher, Stephen J. and Rehfeldt, Daniel and Shinano, Yuji}, title = {SCIP-Jack - A solver for STP and variants with parallelization extensions}, series = {Mathematical Programming Computation}, volume = {9}, journal = {Mathematical Programming Computation}, number = {2}, doi = {10.1007/s12532-016-0114-x}, pages = {231 -- 296}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.}, language = {en} } @article{RehfeldtKochMaher, author = {Rehfeldt, Daniel and Koch, Thorsten and Maher, Stephen J.}, title = {Reduction Techniques for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem}, series = {Networks}, volume = {73}, journal = {Networks}, edition = {2}, publisher = {Wiley}, doi = {10.1002/net.21857}, pages = {206 -- 233}, abstract = {The concept of reduction has frequently distinguished itself as a pivotal ingredient of exact solving approaches for the Steiner tree problem in graphs. In this paper we broaden the focus and consider reduction techniques for three Steiner problem variants that have been extensively discussed in the literature and entail various practical applications: The prize-collecting Steiner tree problem, the rooted prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem. By introducing and subsequently deploying numerous new reduction methods, we are able to drastically decrease the size of a large number of benchmark instances, already solving more than 90 percent of them to optimality. Furthermore, we demonstrate the impact of these techniques on exact solving, using the example of the state-of-the-art Steiner problem solver SCIP-Jack.}, language = {en} } @article{KochSchmidtHilleretal., author = {Koch, Thorsten and Schmidt, Martin and Hiller, Benjamin and Pfetsch, Marc and Geißler, Bj{\"o}rn and Henrion, Ren{\´e} and Joormann, Imke and Martin, Alexander and Morsi, Antonio and R{\"o}misch, Werner and Schewe, Lars and Schultz, R{\"u}diger}, title = {Capacity Evaluation for Large-Scale Gas Networks}, series = {German Success Stories in Industrial Mathematics}, volume = {35}, journal = {German Success Stories in Industrial Mathematics}, isbn = {978-3-030-81454-0}, doi = {10.1007/978-3-030-81455-7}, pages = {23 -- 28}, language = {en} } @article{ChenChuaKoch, author = {Chen, Ying and Chua, Wee Song and Koch, Thorsten}, title = {Forecasting day-ahead high-resolution natural-gas demand and supply in Germany}, series = {Applied Energy}, journal = {Applied Energy}, number = {Volume 228}, doi = {https://doi.org/10.1016/j.apenergy.2018.06.137}, pages = {1091 -- 1110}, abstract = {Forecasting natural gas demand and supply is essential for an efficient operation of the German gas distribution system and a basis for the operational decisions of the transmission system operators. The German gas market is moving towards more short-term planning, in particular, day-ahead contracts. This increases the difficulty that the operators in the dispatching centre are facing, as well as the necessity of accurate forecasts. This paper presents a novel predictive model that provides day-ahead forecasts of the high resolution gas flow by developing a Functional AutoRegressive model with eXogenous variables (FARX). The predictive model allows the dynamic patterns of hourly gas flows to be described in a wide range of historical profiles, while also taking the relevant determinants data into account. By taking into account a richer set of information, FARX provides stronger performance in real data analysis, with both accuracy and high computational efficiency. Compared to several alternative models in out-of-sample forecasts, the proposed model can improve forecast accuracy by at least 12\% and up to 5-fold for one node, 3\% to 2-fold and 2-fold to 4-fold for the other two nodes. The results show that lagged 1-day gas flow and nominations are important predictors, and with their presence in the forecast model, temperature becomes insignificant for short-term predictions.}, language = {en} } @article{ChenXuKoch, author = {Chen, Ying and Xu, Xiuqin and Koch, Thorsten}, title = {Day-ahead high-resolution forecasting of natural gas demand and supply in Germany with a hybrid model}, series = {Applied Energy}, volume = {262}, journal = {Applied Energy}, number = {114486}, doi = {https://doi.org/10.1016/j.apenergy.2019.114486}, abstract = {As the natural gas market is moving towards short-term planning, accurate and robust short-term forecasts of the demand and supply of natural gas is of fundamental importance for a stable energy supply, a natural gas control schedule, and transport operation on a daily basis. We propose a hybrid forecast model, Functional AutoRegressive and Convolutional Neural Network model, based on state-of-the-art statistical modeling and artificial neural networks. We conduct short-term forecasting of the hourly natural gas flows of 92 distribution nodes in the German high-pressure gas pipeline network, showing that the proposed model provides nice and stable accuracy for different types of nodes. It outperforms all the alternative models, with an improved relative accuracy up to twofold for plant nodes and up to fourfold for municipal nodes. For the border nodes with rather flat gas flows, it has an accuracy that is comparable to the best performing alternative model.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Vigerske, Stefan and Winkler, Michael}, title = {制約整数計画ソルバ SCIP の並列化}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18130}, abstract = {制約整数計画(CIP: Constraint Integer Programming)は,制約プログラミング(CP: Constraint Programming),混合整数計画(MIP: Mixed Integer Programming), 充足可能性問題(SAT: Satisfiability Problems)の研究分野におけるモデリング技術と解法を統合している.その結果,制約整数計画は,広いクラスの最適化問題を扱うことができる.SCIP (Solving Constraint Integer Programs)は,CIPを解くソルバとして実装され,Zuse Institute Berlin (ZIB)の研究者を中心として継続的に拡張が続けられている.本論文では,著者らによって開発されたSCIP に対する2種類の並列化拡張を紹介する. 一つは,複数計算ノード間で大規模に並列動作するParaSCIP である. もう一つは,複数コアと共有メモリを持つ1台の計算機上で(スレッド)並列で動作するFiberSCIP である. ParaSCIP は,HLRN IIスーパーコンピュータ上で, 一つのインスタンスを解くために最大7,168 コアを利用した動作実績がある.また,統計数理研究所のFujitsu PRIMERGY RX200S5上でも,最大512コアを利用した動作実績がある.統計数理研究所のFujitsu PRIMERGY RX200S5上 では,これまでに最適解が得られていなかったMIPLIB2010のインスタンスであるdg012142に最適解を与えた.}, language = {ja} } @article{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Vigerske, Stefan and Winkler, Michael}, title = {制約整数計画ソルバ SCIP の並列化}, series = {統計数理}, volume = {61}, journal = {統計数理}, number = {1}, pages = {47 -- 78}, abstract = {制約整数計画(CIP: Constraint Integer Programs)は,制約プログラミング(CP: Constraint Programming),混合整数計画(MIP: Mixed Integer Programming),充足可能性問題(SAT: Satisfability Problem)の研究分野におけるモデリング技術と解法を統合している.その結果,制約整数計画は,広いクラスの最適化問題を扱うことができる.SCIP(Solving Constraint Integer Programs)は,CIP を解くソルバとして実装され,Zuse Institute Berlin(ZIB)の研究者を中心として継続的に拡張が続けられている.本論文では,著者らによって開発された SCIP に対する2 種類の並列化拡張を紹介する.一つは,複数計算ノード間で大規模に並列動作する ParaSCIPである.もう一つは,複数コアと共有メモリを持つ 1 台の計算機上で(スレッド)並列で動作する FiberSCIP である.ParaSCIP は,HLRN II スーパーコンピュータ上で,一つのインスタンスを解くために最大 7,168 コアを利用した動作実績がある.また,統計数理研究所の Fujitsu PRIMERGY RX200S5 上でも,最大 512 コアを利用した動作実績がある.統計数理研究所のFujitsu PRIMERGY RX200S5 上では,これまでに最適解が得られていなかった MIPLIB2010のインスタンスである dg012142 に最適解を与えた.}, language = {ja} } @inproceedings{RehfeldtShinanoKoch, author = {Rehfeldt, Daniel and Shinano, Yuji and Koch, Thorsten}, title = {SCIP-Jack: An exact high performance solver for Steiner tree problems in graphs and related problems}, series = {Modeling, Simulation and Optimization of Complex Processes HPSC 2018}, booktitle = {Modeling, Simulation and Optimization of Complex Processes HPSC 2018}, publisher = {Springer}, doi = {10.1007/978-3-030-55240-4_10}, abstract = {The Steiner tree problem in graphs is one of the classic combinatorial optimization problems. Furthermore, many related problems, such as the rectilinear Steiner tree problem or the maximum-weight connected subgraph problem, have been described in the literature—with a wide range of practical applications. To embrace this wealth of problem classes, the solver SCIP-JACK has been developed as an exact framework for classic Steiner tree and 11 related problems. Moreover, the solver comes with both shared- and distributed memory extensions by means of the UG framework. Besides its versatility, SCIP-JACK is highly competitive for most of the 12 problem classes it can solve, as for instance demonstrated by its top ranking in the recent PACE 2018 Challenge. This article describes the current state of SCIP-JACK and provides up-to-date computational results, including several instances that can now be solved for the first time to optimality.}, language = {en} } @article{TurnerKochSerranoetal., author = {Turner, Mark and Koch, Thorsten and Serrano, Felipe and Winkler, Michael}, title = {Adaptive Cut Selection in Mixed-Integer Linear Programming}, series = {Open Journal of Mathematical Optimization}, volume = {4}, journal = {Open Journal of Mathematical Optimization}, doi = {10.5802/ojmo.25}, pages = {5}, abstract = {Cutting plane selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017 and a neural network verification data set. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP.}, language = {en} } @article{RehfeldtHobbieSchoenheitetal., author = {Rehfeldt, Daniel and Hobbie, Hannes and Sch{\"o}nheit, David and Koch, Thorsten and M{\"o}st, Dominik and Gleixner, Ambros}, title = {A massively parallel interior-point solver for LPs with generalized arrowhead structure, and applications to energy system models}, series = {European Journal of Operational Research}, volume = {296}, journal = {European Journal of Operational Research}, number = {1}, doi = {10.1016/j.ejor.2021.06.063}, pages = {60 -- 71}, abstract = {Linear energy system models are a crucial component of energy system design and operations, as well as energy policy consulting. If detailed enough, such models lead to large-scale linear programs, which can be intractable even for the best state-of-the-art solvers. This article introduces an interior-point solver that exploits common structures of energy system models to efficiently run in parallel on distributed-memory systems. The solver is designed for linear programs with doubly-bordered block-diagonal constraint matrix and makes use of a Schur complement based decomposition. In order to handle the large number of linking constraints and variables commonly observed in energy system models, a distributed Schur complement preconditioner is used. In addition, the solver features a number of more generic techniques such as parallel matrix scaling and structure-preserving presolving. The implementation is based on the solver PIPS-IPM. We evaluate the computational performance on energy system models with up to four billion nonzero entries in the constraint matrix—and up to one billion columns and one billion rows. This article mainly concentrates on the energy system model ELMOD, which is a linear optimization model representing the European electricity markets by the use of a nodal pricing market-clearing. It has been widely applied in the literature on energy system analyses in recent years. However, it will be demonstrated that the new solver is also applicable to other energy system models.}, language = {en} } @inproceedings{BreuerBussieckCaoetal., author = {Breuer, Thomas and Bussieck, Michael and Cao, Karl-Kien and Fiand, Fred and Gils, Hans-Christian and Gleixner, Ambros and Khabi, Dmitry and Kempke, Nils and Koch, Thorsten and Rehfeldt, Daniel and Wetzel, Manuel}, title = {BEAM-ME: Accelerating Linear Energy Systems Models by a Massively Parallel Interior Point Method}, series = {NIC Symposium 2020}, volume = {50}, booktitle = {NIC Symposium 2020}, pages = {345 -- 352}, language = {en} } @article{HenningsAndersonHoppmannBaumetal., author = {Hennings, Felix and Anderson, Lovis and Hoppmann-Baum, Kai and Turner, Mark and Koch, Thorsten}, title = {Controlling transient gas flow in real-world pipeline intersection areas}, series = {Optimization and Engineering}, volume = {22}, journal = {Optimization and Engineering}, edition = {2}, publisher = {Springer Nature}, doi = {https://doi.org/10.1007/s11081-020-09559-y}, pages = {687 -- 734}, abstract = {Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach.}, language = {en} } @article{AndersonTurnerKoch2022, author = {Anderson, Lovis and Turner, Mark and Koch, Thorsten}, title = {Generative deep learning for decision making in gas networks}, series = {Mathematical Methods of Operations Research}, volume = {95}, journal = {Mathematical Methods of Operations Research}, publisher = {Springer Nature}, doi = {10.1007/s00186-022-00777-x}, pages = {503 -- 532}, year = {2022}, abstract = {A decision support system relies on frequent re-solving of similar problem instances. While the general structure remains the same in corresponding applications, the input parameters are updated on a regular basis. We propose a generative neural network design for learning integer decision variables of mixed-integer linear programming (MILP) formulations of these problems. We utilise a deep neural network discriminator and a MILP solver as our oracle to train our generative neural network. In this article, we present the results of our design applied to the transient gas optimisation problem. With the trained network we produce a feasible solution in 2.5s, use it as a warm-start solution, and thereby decrease global optimal solution solve time by 60.5\%.}, language = {en} } @misc{PetersKottigBrandtnerChristofetal., author = {Peters-Kottig, Wolfgang and Brandtner, Andreas and Christof, J{\"u}rgen and Hauffe, Yves and Koch, Thorsten and Kuo, Leslie and Krause, Katja and M{\"u}ller, Anja and Seeliger, Frank and Stanek, Ursula and St{\"o}hr, Elena and Vetter, Danilo and Winkler, Alexander and Zeyns, Andrea and Rusch, Beate}, title = {KOBV Jahresbericht 2021-2022}, volume = {2021-2022}, address = {Berlin}, organization = {Kooperativer Bibliotheksverbund Berlin-Brandenburg}, issn = {0934-5892}, doi = {10.12752/9116}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91162}, language = {de} } @misc{HenningsAndersonHoppmannetal., author = {Hennings, Felix and Anderson, Lovis and Hoppmann, Kai and Turner, Mark and Koch, Thorsten}, title = {Controlling transient gas flow in real-world pipeline intersection areas}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73645}, abstract = {Compressor stations are the heart of every high-pressure gas transport network. Located at intersection areas of the network they are contained in huge complex plants, where they are in combination with valves and regulators responsible for routing and pushing the gas through the network. Due to their complexity and lack of data compressor stations are usually dealt with in the scientific literature in a highly simplified and idealized manner. As part of an ongoing project with one of Germany's largest Transmission System Operators to develop a decision support system for their dispatching center, we investigated how to automatize control of compressor stations. Each station has to be in a particular configuration, leading in combination with the other nearby elements to a discrete set of up to 2000 possible feasible operation modes in the intersection area. Since the desired performance of the station changes over time, the configuration of the station has to adapt. Our goal is to minimize the necessary changes in the overall operation modes and related elements over time, while fulfilling a preset performance envelope or demand scenario. This article describes the chosen model and the implemented mixed integer programming based algorithms to tackle this challenge. By presenting extensive computational results on real world data we demonstrate the performance of our approach.}, language = {en} } @misc{AndersonTurnerKoch, author = {Anderson, Lovis and Turner, Mark and Koch, Thorsten}, title = {Generative deep learning for decision making in gas networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81103}, abstract = {A decision support system relies on frequent re-solving of similar problem instances. While the general structure remains the same in corresponding applications, the input parameters are updated on a regular basis. We propose a generative neural network design for learning integer decision variables of mixed-integer linear programming (MILP) formulations of these problems. We utilise a deep neural network discriminator and a MILP solver as our oracle to train our generative neural network. In this article, we present the results of our design applied to the transient gas optimisation problem. With the trained network we produce a feasible solution in 2.5s, use it as a warm-start solution, and thereby decrease global optimal solution solve time by 60.5\%.}, language = {en} } @misc{RuschPetersKottigBoltzeetal., author = {Rusch, Beate and Peters-Kottig, Wolfgang and Boltze, Julia and Brandtner, Andreas and Degkwitz, Andreas and Kirsch, Simona and Koch, Thorsten and Lohrum, Stefan and M{\"u}ller, Anja and Mutter, Moritz and Seeliger, Frank and Stanek, Ursula}, title = {KOBV Jahresbericht 2019-2020}, address = {Berlin}, organization = {Kooperativer Bibliotheksverbund Berlin-Brandenburg}, issn = {1438-0064}, doi = {10.12752/8247}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82474}, pages = {84}, abstract = {Der aktuelle KOBV-Jahresbericht informiert dar{\"u}ber, was in den Mitgliedsbibliotheken und Partnerprojekten in den letzten beiden Jahren passiert ist und was sich in der Verbundzentrale und in der Bibliothekslandschaft {\"a}ndert. Die Ausgabe 2019/2020 enth{\"a}lt den Schwerpunktteil »Digitalisierung« mit verschiedenen Perspektiven auf die digitale Arbeitswelt.}, language = {de} } @article{PedersenSpreckelsenGotzesetal., author = {Pedersen, Jaap and Spreckelsen, Klaus and Gotzes, Uwe and Zittel, Janina and Koch, Thorsten}, title = {Beimischung von Wasserstoff zum Erdgas: Eine Kapazit{\"a}tsstudie des deutschen Gasnetzes}, series = {gwf Gas + Energie}, journal = {gwf Gas + Energie}, edition = {06/2023}, publisher = {Vulkan Verlag}, abstract = {Die europaische Gasinfrastruktur wird disruptiv in ein zukunftiges dekarbonisiertes Energiesystem ver{\"a}ndert; ein Prozess, der angesichts der j{\"u}ngsten politischen Situation beschleunigt werden muss. Mit einem wachsenden Wasserstoffmarkt wird der pipelinebasierte Transport unter Nutzung der bestehenden Erdgasinfrastruktur wirtschaftlich sinnvoll, tr{\"a}gt zur Erh{\"o}hung der {\"o}ffentlichen Akzeptanz bei und beschleunigt den Umstellungsprozess. In diesem Beitrag wird die maximal technisch machbare Einspeisung von Wasserstoff in das bestehende deutsche Erdgastransportnetz hinsichtlich regulatorischer Grenzwerte der Gasqualit{\"a}t analysiert. Die Analyse erfolgt auf Basis eines transienten Tracking-Modells, das auf dem allgemeinen Pooling-Problem einschließlich Linepack aufbaut. Es zeigt sich, dass das Gasnetz auch bei strengen Grenzwerten gen ̈ugend Kapazit{\"a}t bietet, um f{\"u}r einen großen Teil der bis 2030 geplanten Erzeugungskapazit{\"a}t f{\"u}r gr{\"u}nen Wasserstoff als garantierter Abnehmer zu dienen.}, language = {de} } @article{PedersenSpreckelsenGotzesetal., author = {Pedersen, Jaap and Spreckelsen, Klaus and Gotzes, Uwe and Zittel, Janina and Koch, Thorsten}, title = {Beimischung von Wasserstoff zum Erdgas: Eine Kapazit{\"a}tsstudie des deutschen Gasnetzes}, series = {3R - Fachzeitschrift f{\"u}r Rohrleitungssystem}, journal = {3R - Fachzeitschrift f{\"u}r Rohrleitungssystem}, number = {06/2023}, pages = {70 -- 75}, abstract = {Die europ{\"a}ische Gasinfrastruktur wird disruptiv in ein zuk{\"u}nftiges dekarbonisiertes Energiesystem ver{\"a}ndert; ein Prozess, der angesichts der j{\"u}ngsten politischen Situation beschleunigt werden muss. Mit einem wachsenden Wasserstoffmarkt wird der pipelinebasierte Transport unter Nutzung der bestehenden Erdgasinfrastruktur wirtschaftlich sinnvoll, tr{\"a}gt zur Erh{\"o}hung der {\"o}ffentlichen Akzeptanz bei und beschleunigt den Umstellungsprozess. In diesem Fachbeitrag wird die maximal technisch machbare Einspeisung von Wasserstoff in das bestehende deutsche Erdgastransportnetz hinsichtlich regulatorischer Grenzwerte der Gasqualit{\"a}t analysiert. Die Analyse erfolgt auf Basis eines transienten Tracking-Modells, das auf dem allgemeinen Pooling-Problem einschließlich Linepack aufbaut. Es zeigt sich, dass das Gasnetz auch bei strengen Grenzwerten gen{\"u}gend Kapazit{\"a}t bietet, um f{\"u}r einen großen Teil der bis 2030 geplanten Erzeugungskapazit{\"a}t f{\"u}r gr{\"u}nen Wasserstoff als garantierter Abnehmer zu dienen.}, language = {de} } @article{RehfeldtKochShinano, author = {Rehfeldt, Daniel and Koch, Thorsten and Shinano, Yuji}, title = {Faster exact solution of sparse MaxCut and QUBO problems}, series = {Mathematical Programming Computation}, volume = {15}, journal = {Mathematical Programming Computation}, doi = {10.1007/s12532-023-00236-6}, pages = {445 -- 470}, abstract = {The maximum-cut problem is one of the fundamental problems in combinatorial optimization. With the advent of quantum computers, both the maximum-cut and the equivalent quadratic unconstrained binary optimization problem have experienced much interest in recent years. This article aims to advance the state of the art in the exact solution of both problems—by using mathematical programming techniques. The main focus lies on sparse problem instances, although also dense ones can be solved. We enhance several algorithmic components such as reduction techniques and cutting-plane separation algorithms, and combine them in an exact branch-and-cut solver. Furthermore, we provide a parallel implementation. The new solver is shown to significantly outperform existing state-of-the-art software for sparse maximum-cut and quadratic unconstrained binary optimization instances. Furthermore, we improve the best known bounds for several instances from the 7th DIMACS Challenge and the QPLIB, and solve some of them (for the first time) to optimality.}, language = {en} } @article{LeKoch, author = {Le, Thi Thai and Koch, Thorsten}, title = {Effect of inertia force on the interface stability of a tangential-velocity discontinuity in porous media}, series = {International Journal of Multiphase Flow}, volume = {169}, journal = {International Journal of Multiphase Flow}, doi = {10.1016/j.ijmultiphaseflow.2023.104612}, abstract = {The present study investigates the stability of a tangential-velocity discontinuity in porous media during the withdrawing and injecting processes of natural gases from and into an underground gas storage. The focus is placed on analyzing the impact of inertia forces on the interface stability using the Forchheimer equations. Other publications have relied primarily on Darcy's law to describe flow stability in porous media. However, Darcy's law only adequately describes flows in which viscous forces dominate over inertia forces. As the flow rate increases, the significance of inertia forces becomes more pronounced, and Darcy's law becomes insufficient for considering such flows. Our findings indicate that even a slight consideration of the inertia effect leads to permanent destabilization of the discontinuity interface, regardless of the fluid viscosity or the Mach number. In contrast, when the inertia effect is neglected, the interface is stabilized across the entire Mach number range if the fluid viscosity is strong enough.}, language = {en} } @misc{BertelmannBoltzeCeynowaetal., author = {Bertelmann, Roland and Boltze, Julia and Ceynowa, Klaus and Christof, J{\"u}rgen and Faensen, Katja and Groß, Matthias and Hoffmann, Cornelia and Koch, Thorsten and Kuberek, Monika and Lohrum, Stefan and Pampel, Heinz and Putnings, Markus and Retter, Regina and Rusch, Beate and Sch{\"a}ffler, Hildegard and S{\"o}llner, Konstanze and Steffen, Ronald and Wannick, Eike}, title = {DeepGreen: Open-Access-Transformation in der Informationsinfrastruktur - Anforderungen und Empfehlungen, Version 1.0}, issn = {1438-0064}, doi = {10.12752/8150}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81503}, abstract = {DeepGreen ist ein Service, der es teilnehmenden institutionellen Open-Access-Repositorien,Open-Access-Fachrepositorien und Forschungsinformationssystemen erleichtert, f{\"u}r sie relevante Verlagspublikationen in zyklischer Abfolge mithilfe von Schnittstellen Open Access zur Verf{\"u}gung zu stellen. Die entsprechende Bandbreite an Relationen zwischen den Akteuren, diverse lizenzrechtliche Rahmenbedingungen sowie technische Anforderungen gestalten das Thema komplex. Ziel dieser Handreichung ist es, neben all diesen Themen, die begleitend beleuchtet werden, im Besonderen Empfehlungen f{\"u}r die reibungslose Nutzung der Daten{\"u}bertragung zu liefern. Außerdem werden mithilfe einer vorangestellten Workflow- Evaluierung Unterschiede und Besonderheiten in den Arbeitsschritten bei institutionellen Open-Access-Repositorien und Open-Access-Fachrepositorien aufgezeigt und ebenfalls mit Empfehlungen angereichert.}, language = {de} } @misc{PetkovicChenGamrathetal., author = {Petkovic, Milena and Chen, Ying and Gamrath, Inken and Gotzes, Uwe and Hadjidimitriou, Natalia Selini and Zittel, Janina and Xu, Xiaofei and Koch, Thorsten}, title = {A Hybrid Approach for High Precision Prediction of Gas Flows}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73525}, abstract = {About 20\% of the German energy demand is supplied by natural gas. Ad- ditionally, for about twice the amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by so-called transmissions system operators or TSOs. The number one priority of the TSOs is to ensure security of supply. However, the TSOs have no knowledge of the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high- pressure transport network of about 12.000 km length. Since flexibility and security of supply is of utmost importance to the German Energy Transition ("Energiewende") especially with the introduction of peak-load gas power stations, being able to predict in- and out-flow of the network is of great importance. In this paper we introduce a new hybrid forecast method applied to gas flows at the boundary nodes of a transport network. The new method employs optimized feature minimization and selection. We use a combination of an FAR, LSTM DNN and mathematical programming to achieve robust high quality forecasts on real world data for different types of network nodes. Keywords: Gas Forecast, Time series, Hybrid Method, FAR, LSTM, Mathematical Optimisation}, language = {en} } @book{HadjidimitriouFrangioniLodietal., author = {Hadjidimitriou, Natalia Selini and Frangioni, Antonio and Lodi, Andrea and Koch, Thorsten}, title = {Mathematical Optimization for Efficient and Robust Energy Networks}, volume = {4}, editor = {Hadjidimitriou, Natalia Selini and Frangioni, Antonio and Lodi, Andrea and Koch, Thorsten}, publisher = {Springer}, isbn = {978-3-030-57441-3}, doi = {10.1007/978-3-030-57442-0}, language = {en} } @misc{PrauseHoppmannBaumDefournyetal., author = {Prause, Felix and Hoppmann-Baum, Kai and Defourny, Boris and Koch, Thorsten}, title = {The Maximum Diversity Assortment Selection Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81039}, abstract = {In this paper, we introduce the Maximum Diversity Assortment Selection Problem (MADASS), which is a generalization of the 2-dimensional Cutting Stock Problem (2CSP). Given a set of rectangles and a rectangular container, the goal of 2CSP is to determine a subset of rectangles that can be placed in the container without overlapping, i.e., a feasible assortment, such that a maximum area is covered. In MADASS, we need to determine a set of feasible assortments, each of them covering a certain minimum threshold of the container, such that the diversity among them is maximized. Thereby, diversity is defined as minimum or average normalized Hamming-Distance of all assortment pairs. The MADASS Problem was used in the 11th AIMMS-MOPTA Competition in 2019. The methods we describe in this article and the computational results won the contest. In the following, we give a definition of the problem, introduce a mathematical model and solution approaches, determine upper bounds on the diversity, and conclude with computational experiments conducted on test instances derived from the 2CSP literature.}, language = {en} } @misc{CharoussetBrignolvanAckooijOudjaneetal., author = {Charousset-Brignol, Sandrine and van Ackooij, Wim and Oudjane, Nadia and Daniel, Dominique and Noceir, Slimane and Haus, Utz-Uwe and Lazzaro, Alfio and Frangioni, Antonio and Lobato, Rafael and Ghezelsoflu, Ali and Iardella, Niccol{\`o} and Galli, Laura and Gorgone, Enrico and dell'Amico, Mauro and Giannelos, Spyros and Moreira, Alex and Strbac, Goran and Borozan, Stefan and Falugi, Paula and Pudjianto, Danny and Wyrwoll, Lothar and Schmitt, Carlo and Franken, Marco and Beulertz, Daniel and Schwaeppe, Henrik and Most, Dieter and Y{\"u}ksel-Erg{\"u}n, Inci and Zittel, Janina and Koch, Thorsten}, title = {Synergistic approach of multi-energy models for a European optimal energy system management tool}, series = {The Project Repository Journal}, volume = {9}, journal = {The Project Repository Journal}, pages = {113 -- 116}, language = {en} } @article{Dell’AmicoHadjidimitriouKochetal., author = {Dell'Amico, M. and Hadjidimitriou, Natalia Selini and Koch, Thorsten and Petkovic, Milena}, title = {Forecasting Natural Gas Flows in Large Networks}, series = {Machine Learning, Optimization, and Big Data. MOD 2017.}, volume = {Lecture Notes in Computer Science}, journal = {Machine Learning, Optimization, and Big Data. MOD 2017.}, number = {vol 10710}, doi = {https://doi.org/10.1007/978-3-319-72926-8_14}, pages = {158 -- 171}, abstract = {Natural gas is the cleanest fossil fuel since it emits the lowest amount of other remains after being burned. Over the years, natural gas usage has increased significantly. Accurate forecasting is crucial for maintaining gas supplies, transportation and network stability. This paper presents two methodologies to identify the optimal configuration o parameters of a Neural Network (NN) to forecast the next 24 h of gas flow for each node of a large gas network. In particular the first one applies a Design Of Experiments (DOE) to obtain a quick initial solution. An orthogonal design, consisting of 18 experiments selected among a total of 4.374 combinations of seven parameters (training algorithm, transfer function, regularization, learning rate, lags, and epochs), is used. The best result is selected as initial solution of an extended experiment for which the Simulated Annealing is run to find the optimal design among 89.100 possible combinations of parameters. The second technique is based on the application of Genetic Algorithm for the selection of the optimal parameters of a recurrent neural network for time series forecast. GA was applied with binary representation of potential solutions, where subsets of bits in the bit string represent different values for several parameters of the recurrent neural network. We tested these methods on three municipal nodes, using one year and half of hourly gas flow to train the network and 60 days for testing. Our results clearly show that the presented methodologies bring promising results in terms of optimal configuration of parameters and forecast error.}, language = {en} } @misc{ClarnerTawfikKochetal., author = {Clarner, Jan-Patrick and Tawfik, Christine and Koch, Thorsten and Zittel, Janina}, title = {Network-induced Unit Commitment - A model class for investment and production portfolio planning for multi-energy systems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-87607}, abstract = {In light of the energy transition production planning of future decarbonized energy systems lead to very large and complex optimization problems. A widely used modeling paradigm for modeling and solving such problems is mathematical programming. While there are various scientific energy system models and modeling tools, most of them do not provide the necessary level of detail or the modeling flexibility to be applicable for industrial usage. Industrial modeling tools, on the other hand, provide a high level of detail and modeling flexibility. However, those models often exhibit a size and complexity that restricts their scope to a time horizon of several months, severely complicating long-term planning. As a remedy, we propose a model class that is detailed enough for real-world usage but still compact enough for long-term planning. The model class is based on a generalized unit commitment problem on a network with investment decisions. The focus lies on the topological dependency of different energy production and transportation units.}, language = {en} } @article{ChenKochZakiyevaetal., author = {Chen, Ying and Koch, Thorsten and Zakiyeva, Nazgul and Liu, Kailiang and Xu, Zhitong and Chen, Chun-houh and Nakano, Junji and Honda, Keisuke}, title = {Article's Scientific Prestige: Measuring the Impact of Individual Articles in the Web of Science}, volume = {17}, number = {1}, doi = {https://doi.org/10.1016/j.joi.2023.101379}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86380}, pages = {101379}, abstract = {We performed a citation analysis on the Web of Science publications consisting of more than 63 million articles and 1.45 billion citations on 254 subjects from 1981 to 2020. We proposed the Article's Scientific Prestige (ASP) metric and compared this metric to number of citations (\#Cit) and journal grade in measuring the scientific impact of individual articles in the large-scale hierarchical and multi-disciplined citation network. In contrast to \#Cit, ASP, that is computed based on the eigenvector centrality, considers both direct and indirect citations, and provides steady-state evaluation cross different disciplines. We found that ASP and \#Cit are not aligned for most articles, with a growing mismatch amongst the less cited articles. While both metrics are reliable for evaluating the prestige of articles such as Nobel Prize winning articles, ASP tends to provide more persuasive rankings than \#Cit when the articles are not highly cited. The journal grade, that is eventually determined by a few highly cited articles, is unable to properly reflect the scientific impact of individual articles. The number of references and coauthors are less relevant to scientific impact, but subjects do make a difference.}, language = {en} } @misc{TurnerChmielaKochetal., author = {Turner, Mark and Chmiela, Antonia and Koch, Thorsten and Winkler, Michael}, title = {PySCIPOpt-ML: Embedding Trained Machine Learning Models into Mixed-Integer Programs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-93095}, abstract = {A standard tool for modelling real-world optimisation problems is mixed-integer programming (MIP). However, for many of these problems there is either incomplete information describing variable relations, or the relations between variables are highly complex. To overcome both these hurdles, machine learning (ML) models are often used and embedded in the MIP as surrogate models to represent these relations. Due to the large amount of available ML frameworks, formulating ML models into MIPs is highly non-trivial. In this paper we propose a tool for the automatic MIP formulation of trained ML models, allowing easy integration of ML constraints into MIPs. In addition, we introduce a library of MIP instances with embedded ML constraints. The project is available at https://github.com/Opt-Mucca/PySCIPOpt-ML.}, language = {en} } @inproceedings{TurnerChmielaKochetal., author = {Turner, Mark and Chmiela, Antonia and Koch, Thorsten and Winkler, Michael}, title = {PySCIPOpt-ML: Embedding Trained Machine Learning Models into Mixed-Integer Programs}, abstract = {A standard tool for modelling real-world optimisation problems is mixed-integer programming (MIP). However, for many of these problems there is either incomplete information describing variable relations, or the relations between variables are highly complex. To overcome both these hurdles, machine learning (ML) models are often used and embedded in the MIP as surrogate models to represent these relations. Due to the large amount of available ML frameworks, formulating ML models into MIPs is highly non-trivial. In this paper we propose a tool for the automatic MIP formulation of trained ML models, allowing easy integration of ML constraints into MIPs. In addition, we introduce a library of MIP instances with embedded ML constraints. The project is available at https://github.com/Opt-Mucca/PySCIPOpt-ML.}, language = {en} } @article{ChenZakiyevaZhuetal., author = {Chen, Ying and Zakiyeva, Nazgul and Zhu, Bangzhu and Koch, Thorsten}, title = {Modeling and Forecasting the Dynamics of the Natural Gas Transmission Network in Germany with the Demand and Supply Balance Constraint}, series = {Applied Energy}, journal = {Applied Energy}, number = {278}, doi = {10.1016/j.apenergy.2020.115597}, language = {en} } @article{KochChenLimetal., author = {Koch, Thorsten and Chen, Ying and Lim, Kian Guan and Xu, Xiaofei and Zakiyeva, Nazgul}, title = {A review study of functional autoregressive models with application to energy forecasting}, series = {WIREs Computational Statistics}, journal = {WIREs Computational Statistics}, doi = {10.1002/wics.1525}, language = {en} } @misc{MaherFischerGallyetal., author = {Maher, Stephen J. and Fischer, Tobias and Gally, Tristan and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Robert Lion and Hendel, Gregor and Koch, Thorsten and L{\"u}bbecke, Marco and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schenker, Sebastian and Schwarz, Robert and Serrano, Felipe and Shinano, Yuji and Weninger, Dieter and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 4.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-62170}, abstract = {The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving multi-objective problems, and SCIP-SDP for solving mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed and has now reached version 4.0. The goal of this report is to present the recent changes to the collection. We not only describe the theoretical basis, but focus on implementation aspects and their computational consequences.}, language = {en} } @misc{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Cutting Plane Selection with Analytic Centers and Multiregression}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89065}, abstract = {Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.}, language = {en} } @misc{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Branching via Cutting Plane Selection: Improving Hybrid Branching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91120}, abstract = {Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a 4\% decrease in solve time, and an 8\% decrease in number of nodes over affected instances of MIPLIB 2017.}, language = {en} } @misc{GamrathFischerGallyetal., author = {Gamrath, Gerald and Fischer, Tobias and Gally, Tristan and Gleixner, Ambros and Hendel, Gregor and Koch, Thorsten and Maher, Stephen J. and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schenker, Sebastian and Schwarz, Robert and Serrano, Felipe and Shinano, Yuji and Vigerske, Stefan and Weninger, Dieter and Winkler, Michael and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 3.2}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57675}, abstract = {The SCIP Optimization Suite is a software toolbox for generating and solving various classes of mathematical optimization problems. Its major components are the modeling language ZIMPL, the linear programming solver SoPlex, the constraint integer programming framework and mixed-integer linear and nonlinear programming solver SCIP, the UG framework for parallelization of branch-and-bound-based solvers, and the generic branch-cut-and-price solver GCG. It has been used in many applications from both academia and industry and is one of the leading non-commercial solvers. This paper highlights the new features of version 3.2 of the SCIP Optimization Suite. Version 3.2 was released in July 2015. This release comes with new presolving steps, primal heuristics, and branching rules within SCIP. In addition, version 3.2 includes a reoptimization feature and improved handling of quadratic constraints and special ordered sets. SoPlex can now solve LPs exactly over the rational number and performance improvements have been achieved by exploiting sparsity in more situations. UG has been tested successfully on 80,000 cores. A major new feature of UG is the functionality to parallelize a customized SCIP solver. GCG has been enhanced with a new separator, new primal heuristics, and improved column management. Finally, new and improved extensions of SCIP are presented, namely solvers for multi-criteria optimization, Steiner tree problems, and mixed-integer semidefinite programs.}, language = {en} } @misc{TjusilaBesanconTurneretal., author = {Tjusila, Gennesaret and Besancon, Mathieu and Turner, Mark and Koch, Thorsten}, title = {How Many Clues To Give? A Bilevel Formulation For The Minimum Sudoku Clue Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-90902}, abstract = {It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95\\% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest.}, language = {en} } @inproceedings{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Cutting Plane Selection with Analytic Centers and Multiregression}, series = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023.}, volume = {13884}, booktitle = {Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023.}, publisher = {Springer}, doi = {10.1007/978-3-031-33271-5_4}, pages = {52 -- 68}, abstract = {Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.}, language = {en} } @misc{BestuzhevaBesanconChenetal., author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and van Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and van der Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc E. and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 8.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85309}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type for cut selection, and a complete rework of the way nonlinear constraints are handled. Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further, UG now includes a unified framework to parallelize all solvers, a utility to analyze computational experiments has been added to GCG, dual solutions can be postsolved by PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional problem classes and major performance improvements are available in SCIP-Jack.}, language = {en} } @misc{GamrathAndersonBestuzhevaetal., author = {Gamrath, Gerald and Anderson, Daniel and Bestuzheva, Ksenia and Chen, Wei-Kun and Eifler, Leon and Gasse, Maxime and Gemander, Patrick and Gleixner, Ambros and Gottwald, Leona and Halbig, Katrin and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Le Bodic, Pierre and Maher, Stephen J. and Matter, Frederic and Miltenberger, Matthias and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Tawfik, Christine and Vigerske, Stefan and Wegscheider, Fabian and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 7.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78023}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders' decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders' decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @misc{GleixnerEiflerGallyetal., author = {Gleixner, Ambros and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gemander, Patrick and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Vigerske, Stefan and Weninger, Dieter and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 5.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66297}, abstract = {This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 \% faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 \% faster overall and 23 \% faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.}, language = {en} } @misc{GleixnerBastubbeEifleretal., author = {Gleixner, Ambros and Bastubbe, Michael and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Schubert, Christoph and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Walter, Matthias and Wegscheider, Fabian and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 6.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69361}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders' decomposition in a generic framework. GCG's detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders' framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @article{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Branching via Cutting Plane Selection: Improving Hybrid Branching}, publisher = {Springer}, abstract = {Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a \$4\\%\$ decrease in solve time, and an \$8\\%\$ decrease in number of nodes over affected instances of MIPLIB 2017.}, language = {en} } @article{LeFukumotoKoch, author = {Le, Thi Thai and Fukumoto, Yasuhide and Koch, Thorsten}, title = {Linear stability of a simple shear layer between two parallel streams in a shallow water flow}, series = {Physics Letters A}, volume = {493}, journal = {Physics Letters A}, publisher = {Elservier}, doi = {10.1016/j.physleta.2023.129264}, abstract = {The stability of shear layers in fluid flows is a crucial factor in forming vortices and jets and plays a fundamental role in the development of turbulence. Such shear layer instabilities are ubiquitous in natural phenomena, such as atmospheric and oceanic flows, contributing to the formation of weather systems and predicting tsunamis. This study specifically focuses on the stability of a shear layer sandwiched between two semi-infinite layers within a two-dimensional flow. The velocity profile of the shear layer is assumed to be linearly dependent on the vertical coordinate, while the velocity of the other layers remains uniform with differing strengths. The effect of viscosity and surface tension is ignored to simplify the analysis. The shallow water equations are used to analyze the interface stability of the shear layer, and the resulting dispersion relation between wave frequency and other wave characteristics is obtained. This relation incorporates Whittaker functions and their first derivatives and is used to derive appropriate limits corresponding to various physical conditions. Our study thus contributes to a deeper understanding of the stability of shear layers and their implications for natural phenomena.}, language = {en} } @inproceedings{YuekselErguenKochZittel, author = {Yueksel-Erguen, Inci and Koch, Thorsten and Zittel, Janina}, title = {Consistent flow scenario generation based on open data for operational analysis of European gas transport networks}, series = {Operations Research Proceedings 2023}, booktitle = {Operations Research Proceedings 2023}, abstract = {In recent years, European gas transport has been affected by major disruptive events like political issues such as, most recently, the Russian war on Ukraine. To incorporate the impacts of such events into decision-making during the energy transition, more complex models for gas network analysis are required. However, the limited availability of consistent data presents a significant obstacle in this endeavor. We use a mathematical-modeling-based scenario generator to deal with this obstacle. The scenario generator consists of capacitated network flow models representing the gas network at different aggregation levels. In this study, we present the coarse-to-fine approach utilized in this scenario generator.}, language = {en} } @inproceedings{KochRehfeldtShinano, author = {Koch, Thorsten and Rehfeldt, Daniel and Shinano, Yuji}, title = {On the state of QUBO solving}, series = {Operations Research Proceedings 2023}, booktitle = {Operations Research Proceedings 2023}, abstract = {It is regularly claimed that quantum computers will bring breakthrough progress in solving challenging combinatorial optimization problems relevant in practice. In particular, Quadratic Unconstrained Binary Optimization (QUBO) problems are said to be the model of choice for use in (adiabatic) quantum systems during the noisy intermediate- scale quantum (NISQ) era. Even the first commercial quantum-based systems are advertised to solve such problems. Theoretically, any Integer Program can be converted into a QUBO. In practice, however, there are some caveats, as even for problems that can be nicely modeled as a QUBO, this might not be the most effective way to solve them. We review the state of QUBO solving on digital and quantum computers and provide insights regarding current benchmark instances and modeling.}, language = {en} } @article{BestuzhevaBesanconChenetal., author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {Enabling research through the SCIP optimization suite 8.0}, series = {ACM Transactions on Mathematical Software}, volume = {49}, journal = {ACM Transactions on Mathematical Software}, number = {2}, doi = {10.1145/3585516}, pages = {1 -- 21}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. The focus of this article is on the role of the SCIP Optimization Suite in supporting research. SCIP's main design principles are discussed, followed by a presentation of the latest performance improvements and developments in version 8.0, which serve both as examples of SCIP's application as a research tool and as a platform for further developments. Furthermore, this article gives an overview of interfaces to other programming and modeling languages, new features that expand the possibilities for user interaction with the framework, and the latest developments in several extensions built upon SCIP.}, language = {en} } @misc{BolusaniBesanconBestuzhevaetal., author = {Bolusani, Suresh and Besan{\c{c}}on, Mathieu and Bestuzheva, Ksenia and Chmiela, Antonia and Dion{\´i}sio, Jo{\~a}o and Donkiewicz, Tim and van Doornmalen, Jasper and Eifler, Leon and Ghannam, Mohammed and Gleixner, Ambros and Graczyk, Christoph and Halbig, Katrin and Hedtke, Ivo and Hoen, Alexander and Hojny, Christopher and van der Hulst, Rolf and Kamp, Dominik and Koch, Thorsten and Kofler, Kevin and Lentz, Jurgen and Manns, Julian and Mexi, Gioni and M{\"u}hmer, Erik and E. Pfetsch, Marc and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Turner, Mark and Vigerske, Stefan and Weninger, Dieter and Xu, Liding}, title = {The SCIP Optimization Suite 9.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-95528}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a new cut generator and two new cut selection schemes, a new branching rule, a new LP interface, and several bug fixes. The SCIP Optimization Suite 9.0 also features new Rust and C++ interfaces for SCIP, new Python interface for SoPlex, along with enhancements to existing interfaces. The SCIP Optimization Suite 9.0 also includes new and improved features in the LP solver SoPlex, the presolving library PaPILO, the parallel framework UG, the decomposition framework GCG, and the SCIP extension SCIP-SDP. These additions and enhancements have resulted in an overall performance improvement of SCIP in terms of solving time, number of nodes in the branch-and-bound tree, as well as the reliability of the solver.}, language = {en} } @article{PrauseHoppmannBaumDefournyetal., author = {Prause, Felix and Hoppmann-Baum, Kai and Defourny, Boris and Koch, Thorsten}, title = {The maximum diversity assortment selection problem}, series = {Mathematical Methods of Operations Research}, volume = {93}, journal = {Mathematical Methods of Operations Research}, publisher = {Mathematical Methods of Operations Research}, doi = {https://doi.org/10.1007/s00186-021-00740-2}, pages = {521 -- 554}, abstract = {In this article, we introduce the Maximum Diversity Assortment Selection Problem (MDASP), which is a generalization of the two-dimensional Knapsack Problem (2D-KP). Given a set of rectangles and a rectangular container, the goal of 2D-KP is to determine a subset of rectangles that can be placed in the container without overlapping, i.e., a feasible assortment, such that a maximum area is covered. MDASP is to determine a set of feasible assortments, each of them covering a certain minimum threshold of the container, such that the diversity among them is maximized. Thereby, diversity is defined as the minimum or average normalized Hamming distance of all assortment pairs. MDASP was the topic of the 11th AIMMS-MOPTA Competition in 2019. The methods described in this article and the resulting computational results won the contest. In the following, we give a definition of the problem, introduce a mathematical model and solution approaches, determine upper bounds on the diversity, and conclude with computational experiments conducted on test instances derived from the 2D-KP literature.}, language = {en} } @article{TjusilaBesanconTurneretal., author = {Tjusila, Gennesaret and Besan{\c{c}}on, Mathieu and Turner, Mark and Koch, Thorsten}, title = {How Many Clues To Give? A Bilevel Formulation For The Minimum Sudoku Clue Problem}, series = {Operations Research Letters}, volume = {54}, journal = {Operations Research Letters}, doi = {10.1016/j.orl.2024.107105}, pages = {107105}, abstract = {It has been shown that any 9 by 9 Sudoku puzzle must contain at least 17 clues to have a unique solution. This paper investigates the more specific question: given a particular completed Sudoku grid, what is the minimum number of clues in any puzzle whose unique solution is the given grid? We call this problem the Minimum Sudoku Clue Problem (MSCP). We formulate MSCP as a binary bilevel linear program, present a class of globally valid inequalities, and provide a computational study on 50 MSCP instances of 9 by 9 Sudoku grids. Using a general bilevel solver, we solve 95\% of instances to optimality, and show that the solution process benefits from the addition of a moderate amount of inequalities. Finally, we extend the proposed model to other combinatorial problems in which uniqueness of the solution is of interest.}, language = {en} } @misc{YuekselErguenKochZittel, author = {Yueksel-Erguen, Inci and Koch, Thorsten and Zittel, Janina}, title = {Mathematical optimization based flow scenario generation for operational analysis of European gas transport networks based on open data}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-95789}, abstract = {The decarbonization of the European energy system demands a rapid and comprehensive transformation while securing energy supplies at all times. Still, natural gas plays a crucial role in this process. Recent unexpected events forced drastic changes in gas routes throughout Europe. Therefore, operational-level analysis of the gas transport networks and technical capacities to cope with these transitions using unconventional scenarios has become essential. Unfortunately, data limitations often hinder such analyses. To overcome this challenge, we propose a mathematical model-based scenario generator that enables operational analysis of the European gas network using open data. Our approach focuses on the consistent analysis of specific partitions of the gas transport network, whose network topology data is readily available. We generate reproducible and consistent node-based gas in/out-flow scenarios for these defined network partitions to enable feasibility analysis and data quality assessment. Our proposed method is demonstrated through several applications that address the feasibility analysis and data quality assessment of the German gas transport network. By using open data and a mathematical modeling approach, our method allows for a more comprehensive understanding of the gas transport network's behavior and assists in decision-making during the transition to decarbonization.}, language = {en} }