@misc{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Strong Relaxations for the Train Timetabling Problem using Connected Configurations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64743}, abstract = {The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.}, language = {en} } @misc{BlancoBorndoerferHoangetal., author = {Blanco, Marco and Bornd{\"o}rfer, Ralf and Hoang, Nam-Dung and Kaier, Anton and Maristany de las Casas, Pedro and Schlechte, Thomas and Schlobach, Swen}, title = {Cost Projection Methods for the Shortest Path Problem with Crossing Costs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64817}, abstract = {Real world routing problems, e.g., in the airline industry or in public and rail transit, can feature complex non-linear cost functions. An important case are costs for crossing regions, such as countries or fare zones. We introduce the shortest path problem with crossing costs (SPPCC) to address such situations; it generalizes the classical shortest path problem and variants such as the resource constrained shortest path problem and the minimum label path problem. Motivated by an application in flight trajectory optimization with overflight costs, we focus on the case in which the crossing costs of a region depend only on the nodes used to enter or exit it. We propose an exact Two-Layer-Dijkstra Algorithm as well as a novel cost-projection linearization technique that approximates crossing costs by shadow costs on individual arcs, thus reducing the SPPCC to a standard shortest path problem. We evaluate all algorithms' performance on real-world flight trajectory optimization instances, obtaining very good {\`a} posteriori error bounds.}, language = {en} } @misc{RenkenAhmadiBorndoerferetal., author = {Renken, Malte and Ahmadi, Amin and Bornd{\"o}rfer, Ralf and Sahin, Guvenc and Schlechte, Thomas}, title = {Demand-Driven Line Planning with Selfish Routing}, issn = {1438-0064}, doi = {10.1007/978-3-319-89920-6_91}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64547}, abstract = {Bus rapid transit systems in developing and newly industrialized countries are often operated at the limits of passenger capacity. In particular, demand during morning and afternoon peaks is hardly or even not covered with available line plans. In order to develop demand-driven line plans, we use two mathematical models in the form of integer programming problem formulations. While the actual demand data is specified with origin-destination pairs, the arc-based model considers the demand over the arcs derived from the origin-destination demand. In order to test the accuracy of the models in terms of demand satisfaction, we simulate the optimal solutions and compare number of transfers and travel times. We also question the effect of a selfish route choice behavior which in theory results in a Braess-like paradox by increasing the number of transfers when system capacity is increased with additional lines.}, language = {en} } @inproceedings{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Strong Relaxations for the Train Timetabling Problem using Connected Configurations}, series = {17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)}, volume = {59}, booktitle = {17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)}, editor = {D'Angelo, Gianlorenzo and Dollevoet, Twan}, isbn = {978-3-95977-042-2}, doi = {10.4230/OASIcs.ATMOS.2017.11}, abstract = {The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.}, language = {en} } @inproceedings{BlancoBorndoerferHoangetal., author = {Blanco, Marco and Bornd{\"o}rfer, Ralf and Hoang, Nam-Dung and Kaier, Anton and Maristany de las Casas, Pedro and Schlechte, Thomas and Schlobach, Swen}, title = {Cost Projection Methods for the Shortest Path Problem with Crossing Costs}, series = {17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)}, volume = {59}, booktitle = {17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017)}, editor = {D'Angelo, Gianlorenzo and Dollevoet, Twan}, abstract = {Real world routing problems, e.g., in the airline industry or in public and rail transit, can feature complex non-linear cost functions. An important case are costs for crossing regions, such as countries or fare zones. We introduce the shortest path problem with crossing costs (SPPCC) to address such situations; it generalizes the classical shortest path problem and variants such as the resource constrained shortest path problem and the minimum label path problem. Motivated by an application in flight trajectory optimization with overflight costs, we focus on the case in which the crossing costs of a region depend only on the nodes used to enter or exit it. We propose an exact Two-Layer-Dijkstra Algorithm as well as a novel cost-projection linearization technique that approximates crossing costs by shadow costs on individual arcs, thus reducing the SPPCC to a standard shortest path problem. We evaluate all algorithms' performance on real-world flight trajectory optimization instances, obtaining very good {\`a} posteriori error bounds.}, language = {en} } @inproceedings{BorndoerferArslanElijazyferetal., author = {Bornd{\"o}rfer, Ralf and Arslan, Oytun and Elijazyfer, Ziena and G{\"u}ler, Hakan and Renken, Malte and Sahin, Guvenc and Schlechte, Thomas}, title = {Line Planning on Path Networks with Application to the Istanbul Metrob{\"u}s}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, doi = {10.1007/978-3-319-55702-1_32}, pages = {235 -- 241}, abstract = {Bus rapid transit systems in developing and newly industrialized countries often consist of a trunk with a path topology. On this trunk, several overlapping lines are operated which provide direct connections. The demand varies heavily over the day, with morning and afternoon peaks typically in reverse directions. We propose an integer programming model for this problem, derive a structural property of line plans in the static (or single period) ``unimodal demand'' case, and consider approaches to the solution of the multi-period version that rely on clustering the demand into peak and off-peak service periods. An application to the Metrob{\"u}s system of Istanbul is discussed.}, language = {en} } @inproceedings{SchwartzSchlechteSwarat, author = {Schwartz, Stephan and Schlechte, Thomas and Swarat, Elmar}, title = {Designing Inspector Rosters with Optimal Strategies}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, doi = {10.1007/978-3-319-55702-1_30}, pages = {217 -- 223}, abstract = {We consider the problem of enforcing a toll on a transportation network with limited inspection resources. We formulate a game theoretic model to optimize the allocation of the inspectors, taking the reaction of the network users into account. The model includes several important aspects for practical operation of the control strategy, such as duty types for the inspectors. In contrast to an existing formulation using flows to describe the users' strategies we choose a path formulation and identify dominated user strategies to significantly reduce the problem size. Computational results suggest that our approach is better suited for practical instances.}, language = {en} } @inproceedings{FischerGrimmKlugetal., author = {Fischer, Frank and Grimm, Boris and Klug, Torsten and Schlechte, Thomas}, title = {A Re-optimization Approach for Train Dispatching}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, doi = {10.1007/978-3-319-55702-1_85}, pages = {645 -- 651}, abstract = {The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.}, language = {en} } @article{BorndoerferKlugLamorgeseetal., author = {Bornd{\"o}rfer, Ralf and Klug, Torsten and Lamorgese, Leonardo and Mannino, Carlo and Reuther, Markus and Schlechte, Thomas}, title = {Recent success stories on integrated optimization of railway systems}, series = {Transportation Research Part C: Emerging Technologies}, volume = {74}, journal = {Transportation Research Part C: Emerging Technologies}, number = {1}, doi = {10.1016/j.trc.2016.11.015}, pages = {196 -- 211}, abstract = {Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain developing mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice (e.g. Cacchiani et al., 2014; Bornd{\"o}rfer et al., 2010), with a few notable exceptions. In this paper we address three individual success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will discuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that mathematical optimization can support the planning of railway resources. Thus, mathematical models and optimization can lead to a greater efficiency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.}, language = {en} } @inproceedings{SchadeBorndoerferBreueretal., author = {Schade, Stanley and Bornd{\"o}rfer, Ralf and Breuer, Matthias and Grimm, Boris and Reuther, Markus and Schlechte, Thomas and Siebeneicher, Patrick}, title = {Pattern Detection For Large-Scale Railway Timetables}, series = {Proceedings of the IAROR conference RailLille}, booktitle = {Proceedings of the IAROR conference RailLille}, abstract = {We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.}, language = {en} } @inproceedings{GrimmBorndoerferReutheretal., author = {Grimm, Boris and Bornd{\"o}rfer, Ralf and Reuther, Markus and Schade, Stanley and Schlechte, Thomas}, title = {A Propagation Approach to Acyclic Rolling Stock Rotation Optimization}, series = {Proceedings of the IAROR conference RailLille}, booktitle = {Proceedings of the IAROR conference RailLille}, abstract = {The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.}, language = {en} } @inproceedings{GilgKlugMartienssenetal., author = {Gilg, Brady and Klug, Torsten and Martienssen, Rosemarie and Paat, Joseph and Schlechte, Thomas and Schulz, Christof and Seymen, Sinan and Tesch, Alexander}, title = {Conflict-Free Railway Track Assignment at Depots}, series = {Proceedings of the IAROR conference RailLille}, booktitle = {Proceedings of the IAROR conference RailLille}, abstract = {Managing rolling stock with no passengers aboard is a critical component of railway operations. In particular, one problem is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we present two integer programming models for solving the TAP. To our knowledge, this is the first integrated approach that considers track lengths along with the three most common types of parking tracks. We compare these models on a theoretical level. We also prove that a decision version of the TAP is NP-complete, justifying the use of integer programming techniques. Using stochastic and robust modelling techniques, both models produce parking assignments that are optimized and robust according to random train delays. We conclude with computational results for both models, observing that they perform well on real timetables.}, language = {en} } @misc{GrimmBorndoerferReutheretal., author = {Grimm, Boris and Bornd{\"o}rfer, Ralf and Reuther, Markus and Schade, Stanley and Schlechte, Thomas}, title = {A Propagation Approach to Acyclic Rolling Stock Rotation Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63930}, abstract = {The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.}, language = {en} } @misc{GilgKlugMartienssenetal., author = {Gilg, Brady and Klug, Torsten and Martienssen, Rosemarie and Paat, Joseph and Schlechte, Thomas and Schulz, Christof and Seymen, Sinan and Tesch, Alexander}, title = {Conflict-Free Railway Track Assignment at Depots}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63843}, abstract = {Managing rolling stock with no passengers aboard is a critical component of railway operations. In particular, one problem is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we present two integer programming models for solving the TAP. To our knowledge, this is the first integrated approach that considers track lengths along with the three most common types of parking tracks. We compare these models on a theoretical level. We also prove that a decision version of the TAP is NP-complete, justifying the use of integer programming techniques. Using stochastic and robust modelling techniques, both models produce parking assignments that are optimized and robust according to random train delays. We conclude with computational results for both models, observing that they perform well on real timetables.}, language = {en} } @misc{SchadeBorndoerferBreueretal., author = {Schade, Stanley and Bornd{\"o}rfer, Ralf and Breuer, Matthias and Grimm, Boris and Reuther, Markus and Schlechte, Thomas and Siebeneicher, Patrick}, title = {Pattern Detection For Large-Scale Railway Timetables}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63390}, abstract = {We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.}, language = {en} } @misc{BorndoerferBreuerGrimmetal., author = {Bornd{\"o}rfer, Ralf and Breuer, Matthias and Grimm, Boris and Reuther, Markus and Schade, Stanley and Schlechte, Thomas}, title = {Timetable Sparsification by Rolling Stock Rotation Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65948}, abstract = {Rolling stock optimization is a task that naturally arises by operating a railway system. It could be seen with different level of details. From a strategic perspective to have a rough plan which types of fleets to be bought to a more operational perspective to decide which coaches have to be maintained first. This paper presents a new approach to deal with rolling stock optimisation in case of a (long term) strike. Instead of constructing a completely new timetable for the strike period, we propose a mixed integer programming model that is able to choose appropriate trips from a given timetable to construct efficient tours of railway vehicles covering an optimized subset of trips, in terms of deadhead kilometers and importance of the trips. The decision which trip is preferred over the other is made by a simple evaluation method that is deduced from the network and trip defining data.}, language = {en} } @article{BorndoerferGrimmReutheretal., author = {Bornd{\"o}rfer, Ralf and Grimm, Boris and Reuther, Markus and Schlechte, Thomas}, title = {Template-based Re-optimization of Rolling Stock Rotations}, series = {Public Transport}, journal = {Public Transport}, publisher = {Springer}, doi = {10.1007/s12469-017-0152-4}, pages = {1 -- 19}, abstract = {Rolling stock, i.e., the set of railway vehicles, is among the most expensive and limited assets of a railway company and must be used efficiently. We consider in this paper the re-optimization problem to recover from unforeseen disruptions. We propose a template concept that allows to recover cost minimal rolling stock rotations from reference rotations under a large variety of operational requirements. To this end, connection templates as well as rotation templates are introduced and their application within a rolling stock rotation planning model is discussed. We present an implementation within the rolling stock rotation optimization framework rotor and computational results for scenarios provided by DB Fernverkehr AG, one of the leading railway operators in Europe.}, language = {en} } @misc{SchadeSchlechteWitzig, author = {Schade, Stanley and Schlechte, Thomas and Witzig, Jakob}, title = {Structure-based Decomposition for Pattern-Detection for Railway Timetables}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64525}, abstract = {We consider the problem of pattern detection in large scale railway timetables. This problem arises in rolling stock optimization planning in order to identify invariant sections of the timetable for which a cyclic rotation plan is adequate. We propose a dual reduction technique which leads to an decomposition and enumeration method. Computational results for real world instances demonstrate that the method is able to produce optimal solutions as fast as standard MIP solvers.}, language = {en} }