@misc{RedemannWeberMoelleretal., author = {Redemann, Stefanie and Weber, Britta and M{\"o}ller, Marit and Verbavatz, Jean-Marc and Hyman, Anthony and Baum, Daniel and Prohaska, Steffen and M{\"u}ller-Reichert, Thomas}, title = {The Segmentation of Microtubules in Electron Tomograms Using Amira}, series = {Mitosis: Methods and Protocols}, journal = {Mitosis: Methods and Protocols}, publisher = {Springer}, doi = {10.1007/978-1-4939-0329-0_12}, pages = {261 -- 278}, language = {en} } @article{WeberGreenanProhaskaetal.2012, author = {Weber, Britta and Greenan, Garrett and Prohaska, Steffen and Baum, Daniel and Hege, Hans-Christian and M{\"u}ller-Reichert, Thomas and Hyman, Anthony and Verbavatz, Jean-Marc}, title = {Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos}, series = {Journal of Structural Biology}, volume = {178}, journal = {Journal of Structural Biology}, number = {2}, doi = {10.1016/j.jsb.2011.12.004}, pages = {129 -- 138}, year = {2012}, language = {en} } @article{RedemannBaumgartLindowetal.2017, author = {Redemann, Stefanie and Baumgart, Johannes and Lindow, Norbert and Shelley, Michael and Nazockdast, Ehssan and Kratz, Andrea and Prohaska, Steffen and Brugu{\´e}s, Jan and F{\"u}rthauer, Sebastian and M{\"u}ller-Reichert, Thomas}, title = {C. elegans chromosomes connect to centrosomes by anchoring into the spindle network}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15288}, doi = {10.1038/ncomms15288}, year = {2017}, abstract = {The mitotic spindle ensures the faithful segregation of chromosomes. Here we combine the first large-scale serial electron tomography of whole mitotic spindles in early C. elegans embryos with live-cell imaging to reconstruct all microtubules in 3D and identify their plus- and minus-ends. We classify them as kinetochore (KMTs), spindle (SMTs) or astral microtubules (AMTs) according to their positions, and quantify distinct properties of each class. While our light microscopy and mutant studies show that microtubules are nucleated from the centrosomes, we find only a few KMTs directly connected to the centrosomes. Indeed, by quantitatively analysing several models of microtubule growth, we conclude that minus-ends of KMTs have selectively detached and depolymerized from the centrosome. In toto, our results show that the connection between centrosomes and chromosomes is mediated by an anchoring into the entire spindle network and that any direct connections through KMTs are few and likely very transient.}, language = {en} } @misc{LindowRedemannFabigetal., author = {Lindow, Norbert and Redemann, Stefanie and Fabig, Gunar and M{\"u}ller-Reichert, Thomas and Prohaska, Steffen}, title = {Quantification of Three-Dimensional Spindle Architecture}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66562}, abstract = {Mitotic and meiotic spindles are microtubule-based structures to faithfully segregate chromosomes. Electron tomography is currently the method of choice to analyze the three-dimensional architecture of both types of spindles. Over the years, we have developed methods and software for automatic segmentation and stitching of microtubules in serial sections for large-scale reconstructions. Three-dimensional reconstruction of microtubules, however, is only the first step towards biological insight. The second step is the analysis of the structural data to derive measurable spindle properties. Here, we present a comprehensive set of techniques to quantify spindle parameters. These techniques provide quantitative analyses of specific microtubule classes and are applicable to a variety of tomographic reconstructions of spindles from different organisms.}, language = {en} } @article{FabigKiewiszLindowetal., author = {Fabig, Gunar and Kiewisz, Robert and Lindow, Norbert and Powers, James A. and Cota, Vanessa and Quintanilla, Luis J. and Brugu{\´e}s, Jan and Prohaska, Steffen and Chu, Diana S. and M{\"u}ller-Reichert, Thomas}, title = {Sperm-specific meiotic chromosome segregation in C. elegans}, series = {eLife}, volume = {9}, journal = {eLife}, doi = {10.7554/eLife.50988}, pages = {e50988}, language = {en} } @article{LindowBruenigDercksenetal., author = {Lindow, Norbert and Br{\"u}nig, Florian and Dercksen, Vincent J. and Fabig, Gunar and Kiewisz, Robert and Redemann, Stefanie and M{\"u}ller-Reichert, Thomas and Prohaska, Steffen and Baum, Daniel}, title = {Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography}, series = {bioRxiv}, journal = {bioRxiv}, doi = {10.1101/2020.05.28.120899}, abstract = {We present a software-assisted workflow for the alignment and matching of filamentous structures across a 3D stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After an initial alignment, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labor. The software tool was developed to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite the problems related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time consuming. Furthermore, an interactive visualization of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialized, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. The key to our solution is a careful design of the visualization and interaction tools for each processing step to guarantee real-time response, and an optimized workflow that efficiently guides the user through datasets.}, language = {en} } @misc{LindowBruenigDercksenetal., author = {Lindow, Norbert and Br{\"u}nig, Florian and Dercksen, Vincent J. and Fabig, Gunar and Kiewisz, Robert and Redemann, Stefanie and M{\"u}ller-Reichert, Thomas and Prohaska, Steffen}, title = {Semi-automatic Stitching of Serial Section Image Stacks with Filamentous Structures}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73739}, abstract = {In this paper, we present a software-assisted workflow for the alignment and matching of filamentous structures across a stack of 3D serial image sections. This is achieved by a combination of automatic methods, visual validation, and interactive correction. After an initial alignment, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. This is supported by a quality assessment that visualizes regions that have been already inspected and, thus, allows a trade-off between quality and manual labor. The software tool was developed in collaboration with biologists who investigate microtubule-based spindles during cell division. To quantitatively understand the structural organization of such spindles, a 3D reconstruction of the numerous microtubules is essential. Each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The sections then need to be stitched, i.e. non-rigidly aligned; and the microtubules need to be traced in each section and connected across section boundaries. Experiments led to the conclusion that automatic methods for stitching alone provide only an incomplete solution to practical analysis needs. Automatic methods may fail due to large physical distortions, a low signal-to-noise ratio of the images, or other unexpected experimental difficulties. In such situations, semi-automatic validation and correction is required to rescue as much information as possible to derive biologically meaningful results despite of some errors related to data collection. Since the correct stitching is visually not obvious due to the number of microtubules (up to 30k) and their dense spatial arrangement, these are difficult tasks. Furthermore, a naive inspection of each microtubule is too time consuming. In addition, interactive visualization is hampered by the size of the image data (up to 100 GB). Based on the requirements of our collaborators, we present a practical solution for the semi-automatic stitching of serial section image stacks with filamentous structures.}, language = {en} } @incollection{LindowRedemannBruenigetal., author = {Lindow, Norbert and Redemann, Stefanie and Br{\"u}nig, Florian and Fabig, Gunar and M{\"u}ller-Reichert, Thomas and Prohaska, Steffen}, title = {Quantification of three-dimensional spindle architecture}, series = {Methods in Cell Biology Part B}, volume = {145}, booktitle = {Methods in Cell Biology Part B}, publisher = {Academic Press}, issn = {0091-679X}, doi = {10.1016/bs.mcb.2018.03.012}, pages = {45 -- 64}, abstract = {Mitotic and meiotic spindles are microtubule-based structures to faithfully segregate chromosomes. Electron tomography is currently the method of choice to analyze the three-dimensional (3D) architecture of both types of spindles. Over the years, we have developed methods and software for automatic segmentation and stitching of microtubules in serial sections for large-scale reconstructions. 3D reconstruction of microtubules, however, is only the first step toward biological insight. The second step is the analysis of the structural data to derive measurable spindle properties. Here, we present a comprehensive set of techniques to quantify spindle parameters. These techniques provide quantitative analyses of specific microtubule classes and are applicable to a variety of tomographic reconstructions of spindles from different organisms.}, language = {en} } @misc{RedemannLantzschLindowetal., author = {Redemann, Stefanie and Lantzsch, Ina and Lindow, Norbert and Prohaska, Steffen and Srayko, Martin and M{\"u}ller-Reichert, Thomas}, title = {A switch in microtubule orientation during C. elegans meiosis}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69855}, abstract = {In oocytes of many organisms, meiotic spindles form in the absence of centrosomes [1-5]. Such female meiotic spindles have a pointed appearance in metaphase with microtubules focused at acentrosomal spindle poles. At anaphase, the microtubules of acentrosomal spindles then transition to an inter- chromosomal array, while the spindle poles disappear. This transition is currently not understood. Previous studies have focused on this inter- chromosomal microtubule array and proposed a pushing model to drive chromosome segregation [6, 7]. This model includes an end-on orientation of microtubules with chromosomes. Alternatively, chromosomes were thought to associate along bundles of microtubules [8, 9]. Starting with metaphase, this second model proposed a pure lateral chromosome-to-microtubule association up to the final meiotic stages of anaphase. Here we applied large-scale electron tomography [10] of staged C. elegans oocytes in meiosis to analyze the orientation of microtubules in respect to chromosomes. We show that microtubules at metaphase I are primarily oriented laterally to the chromosomes and that microtubules switch to an end-on orientation during progression through anaphase. We further show that this switch in microtubule orientation involves a kinesin-13 microtubule depolymerase, KLP-7, which removes laterally associated microtubules around chromosomes. From this we conclude that both lateral and end-on modes of microtubule-to-chromosome orientations are successively used in C. elegans oocytes to segregate meiotic chromosomes.}, language = {en} } @article{RedemannLantzschLindowetal., author = {Redemann, Stefanie and Lantzsch, Ina and Lindow, Norbert and Prohaska, Steffen and Srayko, Martin and M{\"u}ller-Reichert, Thomas}, title = {A switch in microtubule orientation during C. elegans meiosis}, series = {Current Biology}, journal = {Current Biology}, issn = {0960-9822}, doi = {10.1016/j.cub.2018.07.012}, abstract = {In oocytes of many organisms, meiotic spindles form in the absence of centrosomes [1-5]. Such female meiotic spindles have a pointed appearance in metaphase with microtubules focused at acentrosomal spindle poles. At anaphase, the microtubules of acentrosomal spindles then transition to an inter- chromosomal array, while the spindle poles disappear. This transition is currently not understood. Previous studies have focused on this inter- chromosomal microtubule array and proposed a pushing model to drive chromosome segregation [6, 7]. This model includes an end-on orientation of microtubules with chromosomes. Alternatively, chromosomes were thought to associate along bundles of microtubules [8, 9]. Starting with metaphase, this second model proposed a pure lateral chromosome-to-microtubule association up to the final meiotic stages of anaphase. Here we applied large-scale electron tomography [10] of staged C. elegans oocytes in meiosis to analyze the orientation of microtubules in respect to chromosomes. We show that microtubules at metaphase I are primarily oriented laterally to the chromosomes and that microtubules switch to an end-on orientation during progression through anaphase. We further show that this switch in microtubule orientation involves a kinesin-13 microtubule depolymerase, KLP-7, which removes laterally associated microtubules around chromosomes. From this we conclude that both lateral and end-on modes of microtubule-to-chromosome orientations are successively used in C. elegans oocytes to segregate meiotic chromosomes.}, language = {en} }