@inproceedings{MartinGeisslerHeynetal.2011, author = {Martin, Alexander and Geißler, Bj{\"o}rn and Heyn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, series = {Optimierung in der Energiewirtschaft}, booktitle = {Optimierung in der Energiewirtschaft}, publisher = {VDI-Verlag, D{\"u}sseldorf}, pages = {105 -- 114}, year = {2011}, language = {en} } @incollection{HillerHumpolaLehmannetal., author = {Hiller, Benjamin and Humpola, Jesco and Lehmann, Thomas and Lenz, Ralf and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Willert, Bernhard}, title = {Computational results for validation of nominations}, series = {Evaluating Gas Network Capacities}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, abstract = {The different approaches to solve the validation of nomination problem presented in the previous chapters are evaluated computationally in this chapter. Each approach is analyzed individually, as well as the complete solvers for these problems. We demonstrate that the presented approaches can successfully solve large-scale real-world instances.}, language = {en} } @incollection{HumpolaFuegenschuhHilleretal., author = {Humpola, Jesco and F{\"u}genschuh, Armin and Hiller, Benjamin and Koch, Thorsten and Lehmann, Thomas and Lenz, Ralf and Schwarz, Robert and Schweiger, Jonas}, title = {The Specialized MINLP Approach}, series = {Evaluating Gas Network Capacities}, volume = {SIAM-MOS series on Optimization}, booktitle = {Evaluating Gas Network Capacities}, isbn = {9781611973686}, abstract = {We propose an approach to solve the validation of nominations problem using mixed-integer nonlinear programming (MINLP) methods. Our approach handles both the discrete settings and the nonlinear aspects of gas physics. Our main contribution is an innovative coupling of mixed-integer (linear) programming (MILP) methods with nonlinear programming (NLP) that exploits the special structure of a suitable approximation of gas physics, resulting in a global optimization method for this type of problem.}, language = {en} } @article{HumpolaLehmannFuegenschuh, author = {Humpola, Jesco and Lehmann, Thomas and F{\"u}genschuh, Armin}, title = {A primal heuristic for optimizing the topology of gas networks based on dual information}, series = {EURO Journal on Computational Optimization}, volume = {3}, journal = {EURO Journal on Computational Optimization}, number = {1}, doi = {10.1007/s13675-014-0029-0}, pages = {53 -- 78}, abstract = {We present a novel heuristic to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network's capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the nonlinearities by linear outer approximation and spatial branching. At certain nodes of the branching tree, we compute a KKT point of a nonlinear relaxation. Based on the information from the KKT point we alter some of the binary variables in a locally promising way exploiting our problem-specific structure. On a test set of real-world instances, we are able to increase the chance of identifying feasible solutions by some order of magnitude compared to standard MINLP heuristics that are already built in the general-purpose MINLP solver SCIP.}, language = {en} } @misc{HumpolaFuegenschuhLehmann, author = {Humpola, Jesco and F{\"u}genschuh, Armin and Lehmann, Thomas}, title = {A Primal Heuristic for MINLP based on Dual Information}, issn = {1438-0064}, doi = {10.1007/s13675-014-0029-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43110}, abstract = {We present a novel heuristic algorithm to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network's capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the nonlinearities by linear outer approximation and spatial branching. At certain nodes of the branching tree, we compute a KKT point for a nonlinear relaxation. Based on the information from the KKT point we alter some of the integer variables in a locally promising way. We describe this heuristic for general MINLPs and then show how to tailor the heuristic to exploit our problem-specific structure. On a test set of real-world instances, we are able to increase the chance of identifying feasible solutions by some order of magnitude compared to standard MINLP heuristics that are already built in the general-purpose MINLP solver SCIP.}, language = {en} } @misc{PfetschFuegenschuhGeissleretal., author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, issn = {1438-0064}, doi = {10.1080/10556788.2014.888426}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16531}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult mixed-integer non-convex nonlinear feasibility problem. The first phase consists of four distinct algorithms facilitating mixed-integer linear, mixed-integer nonlinear, reduced nonlinear, and complementarity constrained methods to compute possible settings for the discrete decisions. The second phase employs a precise continuous nonlinear programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances whose size is significantly larger than networks that have appeared in the literature previously.}, language = {en} } @misc{MartinGeisslerHaynetal., author = {Martin, Alexander and Geißler, Bj{\"o}rn and Hayn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15121}, abstract = {Die mittel- und l{\"a}ngerfristige Planung f{\"u}r den Gastransport hat sich durch {\"A}nderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazit{\"a}t und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und L{\"o}sungsans{\"a}tze skizziert.}, language = {de} }