@article{SekuboyinaBayatHusseinietal.2020, author = {Sekuboyina, Anjany and Bayat, Amirhossein and Husseini, Malek E. and L{\"o}ffler, Maximilian and Li, Hongwei and Tetteh, Giles and Kukačka, Jan and Payer, Christian and Štern, Darko and Urschler, Martin and Chen, Maodong and Cheng, Dalong and Lessmann, Nikolas and Hu, Yujin and Wang, Tianfu and Yang, Dong and Xu, Daguang and Ambellan, Felix and Amiranashvili, Tamaz and Ehlke, Moritz and Lamecker, Hans and Lehnert, Sebastian and Lirio, Marilia and de Olaguer, Nicol{\´a}s P{\´e}rez and Ramm, Heiko and Sahu, Manish and Tack, Alexander and Zachow, Stefan and Jiang, Tao and Ma, Xinjun and Angerman, Christoph and Wang, Xin and Wei, Qingyue and Brown, Kevin and Wolf, Matthias and Kirszenberg, Alexandre and Puybareau, {\´E}lodie and Valentinitsch, Alexander and Rempfler, Markus and Menze, Bj{\"o}rn H. and Kirschke, Jan S.}, title = {VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images}, journal = {arXiv}, arxiv = {http://arxiv.org/abs/2001.09193}, year = {2020}, language = {en} } @misc{TackKobayashiGaueretal.2015, author = {Tack, Alexander and Kobayashi, Yuske and Gauer, Tobias and Schlaefer, Alexander and Werner, Ren{\´e}}, title = {Bewegungsfeldsch{\"a}tzung in artefaktbehafteten 4D-CT-Bilddaten: Vergleich von paar- und gruppenweiser Registrierung}, volume = {Supplement 1}, journal = {21st Annual Meeting of the German-Society-for-Radiation-Oncology}, edition = {191}, publisher = {Springer}, address = {Strahlentherapie und Onkologie}, doi = {10.1007/s00066-015-0847-x}, pages = {65 -- 65}, year = {2015}, abstract = {In der Strahlentherapie von Lungentumoren kann mittels Dosisakkumulation der Einfluss von Atembewegungen auf statisch geplante Dosisverteilungen abgesch{\"a}tzt werden. Grundlage sind 4D-CT-Daten des Patienten, aus denen mittels nicht-linearer Bildregistrierung eine Sequenz von Bewegungsfeldern berechnet wird. Typischerweise werden Methoden der paarweisen Bildregistrierung eingesetzt, d.h. konsekutiv zwei Atemphasen aufeinander registriert. Hierbei erfolgt i.d.R. eine physiologisch nicht plausible Anpassung der Felder an CT-Bewegungsartefakte. Gruppenweise Registrierungsans{\"a}tze ber{\"u}cksichtigen hingegen gleichzeitig s{\"a}mtliche Bilddaten des 4D-CT-Scans und erm{\"o}glichen die Integration von zeitlichen Konsistenzbetrachtungen. In diesem Beitrag wird der potentielle Vorteil der gruppen- im Vergleich zur paarweisen Registrierung in artefaktbehafteten 4D-CT-Daten untersucht.}, language = {de} } @inproceedings{TackKobayashiGaueretal.2015, author = {Tack, Alexander and Kobayashi, Yuske and Gauer, Tobias and Schlaefer, Alexander and Werner, Ren{\´e}}, title = {Groupwise Registration for Robust Motion Field Estimation in Artifact-Affected 4D CT Images}, booktitle = {ICART: Imaging and Computer Assistance in Radiation Therapy: A workshop held on Friday 9th October as part of MICCAI 2015 in Munich, Germany. MICCAI workshop. 2015.}, pages = {18 -- 25}, year = {2015}, abstract = {Precise voxel trajectory estimation in 4D CT images is a prerequisite for reliable dose accumulation during 4D treatment planning. 4D CT image data is, however, often affected by motion artifacts and applying standard pairwise registration to such data sets bears the risk of aligning anatomical structures to artifacts - with physiologically unrealistic trajectories being the consequence. In this work, the potential of a novel non-linear hybrid intensity- and feature-based groupwise registration method for robust motion field estimation in artifact-affected 4D CT image data is investigated. The overall registration performance is evaluated on the DIR-lab datasets; Its robustness if applied to artifact-affected data sets is analyzed using clinically acquired data sets with and without artifacts. The proposed registration approach achieves an accuracy comparable to the state-of-the-art (subvoxel accuracy), but smoother voxel trajectories compared to pairwise registration. Even more important: it maintained accuracy and trajectory smoothness in the presence of image artifacts - in contrast to standard pairwise registration, which yields higher landmark-based registration errors and a loss of trajectory smoothness when applied to artifact-affected data sets.}, language = {en} } @article{SekuboyinaHusseiniBayatetal.2021, author = {Sekuboyina, Anjany and Husseini, Malek E. and Bayat, Amirhossein and L{\"o}ffler, Maximilian and Liebl, Hans and Li, Hongwei and Tetteh, Giles and Kukačka, Jan and Payer, Christian and Štern, Darko and Urschler, Martin and Chen, Maodong and Cheng, Dalong and Lessmann, Nikolas and Hu, Yujin and Wang, Tianfu and Yang, Dong and Xu, Daguang and Ambellan, Felix and Amiranashvili, Tamaz and Ehlke, Moritz and Lamecker, Hans and Lehnert, Sebastian and Lirio, Marilia and de Olaguer, Nicol{\´a}s P{\´e}rez and Ramm, Heiko and Sahu, Manish and Tack, Alexander and Zachow, Stefan and Jiang, Tao and Ma, Xinjun and Angerman, Christoph and Wang, Xin and Brown, Kevin and Kirszenberg, Alexandre and Puybareau, {\´E}lodie and Chen, Di and Bai, Yiwei and Rapazzo, Brandon H. and Yeah, Timyoas and Zhang, Amber and Xu, Shangliang and Hou, Feng and He, Zhiqiang and Zeng, Chan and Xiangshang, Zheng and Liming, Xu and Netherton, Tucker J. and Mumme, Raymond P. and Court, Laurence E. and Huang, Zixun and He, Chenhang and Wang, Li-Wen and Ling, Sai Ho and Huynh, L{\^e} Duy and Boutry, Nicolas and Jakubicek, Roman and Chmelik, Jiri and Mulay, Supriti and Sivaprakasam, Mohanasankar and Paetzold, Johannes C. and Shit, Suprosanna and Ezhov, Ivan and Wiestler, Benedikt and Glocker, Ben and Valentinitsch, Alexander and Rempfler, Markus and Menze, Bj{\"o}rn H. and Kirschke, Jan S.}, title = {VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images}, volume = {73}, journal = {Medical Image Analysis}, doi = {10.1016/j.media.2021.102166}, year = {2021}, abstract = {Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.}, language = {en} } @misc{AmbellanTackEhlkeetal.2019, author = {Ambellan, Felix and Tack, Alexander and Ehlke, Moritz and Zachow, Stefan}, title = {Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72704}, year = {2019}, abstract = {We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging (MRI) that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs).The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures.The shape models and neural networks employed are trained using data from the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets from the SKI10 challenge.For the first time, an accuracy equivalent to the inter-observer variability of human readers is achieved in this challenge.Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We make the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation.In conclusion, combining localized classification via CNNs with statistical anatomical knowledge via SSMs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data.}, language = {en} } @inproceedings{TackZachow2019, author = {Tack, Alexander and Zachow, Stefan}, title = {Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, booktitle = {IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)}, doi = {10.1109/ISBI.2019.8759201}, pages = {40 -- 43}, year = {2019}, abstract = {Volumetry of cartilage of the knee is needed for knee osteoarthritis (KOA) assessment. It is typically performed manually in a tedious and subjective process. We developed a method for an automated, segmentation-based quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data and cartilage volumetry readings performed by clinical experts for 1378 subjects provided by the Osteoarthritis Initiative. It was shown that 3D CNNs are able to achieve volume measures comparable to the magnitude of variation between expert readings and the real in vivo situation. In the future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as longitudinal analysis of KOA progression.}, language = {en} } @misc{AmbellanTackEhlkeetal.2019, author = {Ambellan, Felix and Tack, Alexander and Ehlke, Moritz and Zachow, Stefan}, title = {Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative (Supplementary Material)}, volume = {52}, journal = {Medical Image Analysis}, number = {2}, doi = {10.12752/4.ATEZ.1.0}, pages = {109 -- 118}, year = {2019}, abstract = {We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained using data of the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets of the SKI10 challenge. For the first time, an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We made the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation. In conclusion, combining statistical anatomical knowledge via SSMs with the localized classification via CNNs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data.}, language = {en} } @article{AmbellanTackEhlkeetal.2019, author = {Ambellan, Felix and Tack, Alexander and Ehlke, Moritz and Zachow, Stefan}, title = {Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, volume = {52}, journal = {Medical Image Analysis}, number = {2}, doi = {10.1016/j.media.2018.11.009}, pages = {109 -- 118}, year = {2019}, abstract = {We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained using data of the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets of the SKI10 challenge. For the first time, an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We made the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation. In conclusion, combining statistical anatomical knowledge via SSMs with the localized classification via CNNs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data.}, language = {en} } @misc{TackZachow2019, author = {Tack, Alexander and Zachow, Stefan}, title = {Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71439}, year = {2019}, abstract = {Volumetry of the cartilage of the knee, as needed for the assessment of knee osteoarthritis (KOA), is typically performed in a tedious and subjective process. We present an automated segmentation-based method for the quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data as well as cartilage volumetry readings given by clinical experts for 1378 subjects. It was shown that 3D CNNs can be employed for cartilage volumetry with an accuracy similar to expert volumetry readings. In future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as assessment of KOA progression via longitudinal analysis.}, language = {en} } @article{BernardSalamancaThunbergetal.2016, author = {Bernard, Florian and Salamanca, Luis and Thunberg, Johan and Tack, Alexander and Jentsch, Dennis and Lamecker, Hans and Zachow, Stefan and Hertel, Frank and Goncalves, Jorge and Gemmar, Peter}, title = {Shape-aware Surface Reconstruction from Sparse Data}, journal = {arXiv}, arxiv = {http://arxiv.org/abs/arXiv:1602.08425v1}, pages = {1602.08425v1}, year = {2016}, abstract = {The reconstruction of an object's shape or surface from a set of 3D points is a common topic in materials and life sciences, computationally handled in computer graphics. Such points usually stem from optical or tactile 3D coordinate measuring equipment. Surface reconstruction also appears in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or the alignment of intra-operative navigation and preoperative planning data. In contrast to mere 3D point clouds, medical imaging yields contextual information on the 3D point data that can be used to adopt prior information on the shape that is to be reconstructed from the measurements. In this work we propose to use a statistical shape model (SSM) as a prior for surface reconstruction. The prior knowledge is represented by a point distribution model (PDM) that is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we reformulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given measurements are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are oriented according to the surface normals at the PDM points, a surface-based tting is accomplished. By estimating the parameters of the GMM in a maximum a posteriori manner, the reconstruction of the surface from the given measurements is achieved. Extensive experiments suggest that our proposed approach leads to superior surface reconstructions compared to Iterative Closest Point (ICP) methods.}, language = {en} }