@misc{YokoyamaShinanoTaniguchietal.2014, author = {Yokoyama, Ryohei and Shinano, Yuji and Taniguchi, Syusuke and Ohkura, Masashi and Wakui, Tetsuya}, title = {Optimization of energy supply systems by MILP branch and bound method in consideration of hierarchical relationship between design and operation}, issn = {1438-0064}, doi = {10.1016/j.enconman.2014.12.020}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49413}, year = {2014}, abstract = {To attain the highest performance of energy supply systems, it is necessary to rationally determine types, capacities, and numbers of equipment in consideration of their operational strategies corresponding to seasonal and hourly variations in energy demands. In the combinatorial optimization method based on the mixed-integer linear programming (MILP), integer variables are used to express the selection, numbers, and on/off status of operation of equipment, and the number of these variables increases with those of equipment and periods for variations in energy demands, and affects the computation efficiency significantly. In this paper, a MILP method utilizing the hierarchical relationship between design and operation variables is proposed to solve the optimal design problem of energy supply systems efficiently: At the upper level, the optimal values of design variables are searched by the branch and bound method; At the lower level, the values of operation variables are optimized independently at each period by the branch and bound method under the values of design variables given tentatively during the search at the upper level; Lower bounds for the optimal value of the objective function are evaluated, and are utilized for the bounding operations at both the levels. This method is implemented into open and commercial MILP solvers. Illustrative and practical case studies on the optimal design of cogeneration systems are conducted, and the validity and effectiveness of the proposed method are clarified.}, language = {en} } @article{YokoyamaShinanoTaniguchietal., author = {Yokoyama, Ryohei and Shinano, Yuji and Taniguchi, Syusuke and Ohkura, Masashi and Wakui, Tetsuya}, title = {Optimization of energy supply systems by MILP branch and bound method in consideration of hierarchical relationship between design and operation}, series = {Energy Conversion and Management}, volume = {92}, journal = {Energy Conversion and Management}, doi = {10.1016/j.enconman.2014.12.020}, pages = {92 -- 104}, abstract = {To attain the highest performance of energy supply systems, it is necessary to rationally determine types, capacities, and numbers of equipment in consideration of their operational strategies corresponding to seasonal and hourly variations in energy demands. In the combinatorial optimization method based on the mixed-integer linear programming (MILP), integer variables are used to express the selection, numbers, and on/off status of operation of equipment, and the number of these variables increases with those of equipment and periods for variations in energy demands, and affects the computation efficiency significantly. In this paper, a MILP method utilizing the hierarchical relationship between design and operation variables is proposed to solve the optimal design problem of energy supply systems efficiently: At the upper level, the optimal values of design variables are searched by the branch and bound method; At the lower level, the values of operation variables are optimized independently at each period by the branch and bound method under the values of design variables given tentatively during the search at the upper level; Lower bounds for the optimal value of the objective function to be minimized are evaluated, and are utilized for the bounding operations at both the levels. This method is implemented into open and commercial MILP solvers. Illustrative and practical case studies on the optimal design of cogeneration systems are conducted, and the validity and effectiveness of the proposed method are clarified.}, language = {en} } @inproceedings{YokoyamaShinanoTaniguchietal., author = {Yokoyama, Ryohei and Shinano, Yuji and Taniguchi, Syusuke and Ohkura, Masashi and Wakui, Tetsuya}, title = {Generation of multiple best solutions in multiobjective optimal design of energy supply systems}, series = {Proceedings of the 15th International Conference on Power Engineering. ICOPE 2015}, booktitle = {Proceedings of the 15th International Conference on Power Engineering. ICOPE 2015}, doi = {10.1299/jsmeicope.2015.12._ICOPE-15-_56}, abstract = {Optimization approaches based on the mixed-integer linear programming (MILP) have been utilized to design energy supply systems. In this paper, an MILP method utilizing the hierarchical relationship between design and operation is extended to search not only the optimal solution but also suboptimal ones which follow the optimal one without any omissions, what are called K-best solutions, efficiently in a multiobjective optimal design problem. At the upper level, the values of design variables for the K-best solutions are searched by the branch and bound method. At the lower level, the values of operation variables are optimized independently at each period by the branch and bound method under the values of design variables given tentatively. Incumbents for the K-best solutions and an upper bound for all the values of the objective function for the K-best solutions are renewed if necessary between both the levels. This method is implemented into a commercial MILP solver. A practical case study on the multiobjective optimal design of a cogeneration system is conducted, and the validity and effectiveness of the method are clarified.}, language = {en} }