@misc{UsluWerner, author = {Uslu, Svenja and Werner, Axel}, title = {A Two-Phase Method for the Biobjective k-Architecture Connected Facility Location Problem and Hypervolume Computation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53753}, abstract = {We apply customized versions of the ε-constraint Method and the Two-Phase Method to a problem originating in access network planning. We introduce various notions of quality measures for approximated/partial sets of nondominated points, utilizing the concept of hypervolume for biobjective problems. We report on computations to assess the performance of the two methods in terms of these measures.}, language = {en} } @inproceedings{GleixnerKempkeKochetal., author = {Gleixner, Ambros and Kempke, Nils-Christian and Koch, Thorsten and Rehfeldt, Daniel and Uslu, Svenja}, title = {First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, edition = {1}, publisher = {Springer International Publishing}, doi = {10.1007/978-3-030-48439-2_13}, pages = {105 -- 111}, abstract = {In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix.}, language = {en} } @misc{GleixnerKempkeKochetal., author = {Gleixner, Ambros and Kempke, Nils-Christian and Koch, Thorsten and Rehfeldt, Daniel and Uslu, Svenja}, title = {First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method}, issn = {1438-0064}, doi = {10.1007/978-3-030-48439-2_13}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74084}, abstract = {In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix.}, language = {en} }