@misc{GroetschelKrumkeRambauetal., author = {Gr{\"o}tschel, Martin and Krumke, Sven and Rambau, J{\"o}rg and Winter, Thomas and Zimmermann, Uwe}, title = {Combinatorial Online Optimization in Real Time}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6424}, number = {01-16}, abstract = {Optimization is the task of finding an optimum solution to a given problem. When the decision variables are discrete we speak of a combinatorial optimization problem. Such a problem is online when decisions have to be made before all data of the problem are known. And we speak of a real-time online problem when online decisions have to be computed within very tight time bounds. This paper surveys the are of combinatorial online and real-time optimization, it discusses, in particular, the concepts with which online and real-time algorithms can be analyzed.}, language = {en} } @misc{KrumkePaepeRambauetal., author = {Krumke, Sven and Paepe, Willem de and Rambau, J{\"o}rg and Stougie, Leen}, title = {Online Bin-Coloring}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6338}, number = {01-07}, abstract = {We introduce a new problem that was motivated by a (more complicated) problem arising in a robotized assembly enviroment. The bin coloring problem is to pack unit size colored items into bins, such that the maximum number of different colors per bin is minimized. Each bin has size~\$B\in\mathbb{N}\$. The packing process is subject to the constraint that at any moment in time at most \$q\in\mathbb{N}\$ bins may be partially filled. Moreover, bins may only be closed if they are filled completely. An online algorithm must pack each item must be packed without knowledge of any future items. We investigate the existence of competitive online algorithms for the online uniform binpacking problem. We show upper bounds for the bin coloring problem. We prove an upper bound of \$3q\$ - 1 and a lower bound of \$2q\$ for the competitive ratio of a natural greedy-type algorithm, and show that surprisingly a trivial algorithm which uses only one open bin has a strictly better competitive ratio of \$2q\$ - 1. Morever, we show that any deterministic algorithm has a competitive ratio \$\Omega (q)\$ and that randomization does not improve this lower bound even when the adversary is oblivious.}, language = {en} } @misc{AscheuerGroetschelKrumkeetal., author = {Ascheuer, Norbert and Gr{\"o}tschel, Martin and Krumke, Sven and Rambau, J{\"o}rg}, title = {Combinatorial Online Optimization}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3674}, number = {SC-98-24}, abstract = {In ``classical'' optimization, all data of a problem instance are considered given. The standard theory and the usual algorithmic techniques apply to such cases only. Online optimization is different. Many decisions have to be made before all data are available. In addition, decisions once made cannot be changed. How should one act ``best'' in such an environment? In this paper we survey online problems coming up in combinatorial optimization. We first outline theoretical concepts, such as competitiveness against various adversaries, to analyze online problems and algorithms. The focus, however, lies on real-world applications. We report, in particular, on theoretical investigations and our practical experience with problems arising in transportation and the automatic handling of material.}, language = {en} }