@inproceedings{ChristgauKnaustSteinke, author = {Christgau, Steffen and Knaust, Marius and Steinke, Thomas}, title = {A First Step towards Support for MPI Partitioned Communication on SYCL-programmed FPGAs}, series = {IEEE/ACM International Workshop on Heterogeneous High-performance Reconfigurable Computing, H2RC@SC 2022, Dallas, TX, USA, November 13-18, 2022}, booktitle = {IEEE/ACM International Workshop on Heterogeneous High-performance Reconfigurable Computing, H2RC@SC 2022, Dallas, TX, USA, November 13-18, 2022}, publisher = {IEEE}, doi = {10.1109/H2RC56700.2022.00007}, pages = {9 -- 17}, abstract = {Version 4.0 of the Message Passing Interface standard introduced the concept of Partitioned Communication which adds support for multiple contributions to a communication buffer. Although initially targeted at multithreaded MPI applications, Partitioned Communication currently receives attraction in the context of accelerators, especially GPUs. In this publication it is demonstrated that this communication concept can also be implemented for SYCL-programmed FPGAs. This includes a discussion of the design space and the presentation of a prototypical implementation. Experimental results show that a lightweight implementation on top of an existing MPI library is possible. In addition, the presented approach also reveals issues in both the SYCL and the MPI standard which need to be addresses for improved support of the intended communication style.}, language = {en} } @article{KnoopGronemeierSuehringetal., author = {Knoop, Helge and Gronemeier, Tobias and S{\"u}hring, Matthias and Steinbach, Peter and Noack, Matthias and Wende, Florian and Steinke, Thomas and Knigge, Christoph and Raasch, Siegfried and Ketelsen, Klaus}, title = {Porting the MPI-parallelized LES model PALM to multi-GPU systems and many integrated core processors: an experience report}, series = {International Journal of Computational Science and Engineering. Special Issue on: Novel Strategies for Programming Accelerators}, journal = {International Journal of Computational Science and Engineering. Special Issue on: Novel Strategies for Programming Accelerators}, edition = {Special Issue on: Novel Strategies for Programming Accelerators}, publisher = {Inderscience}, abstract = {The computational power and availability of graphics processing units (GPUs), such as the Nvidia Tesla, and Many Integrated Core (MIC) processors, such as the Intel Xeon Phi, on high performance computing (HPC) systems is rapidly evolving. However, HPC applications need to be ported to take advantage of such hardware. This paper is a report on our experience of porting the MPI+OpenMP parallelised large-eddy simulation model (PALM) to multi-GPU as well as to MIC processor environments using the directive-based high level programming paradigm OpenACC and OpenMP, respectively. PALM is a Fortran-based computational fluid dynamics software package, used for the simulation of atmospheric and oceanic boundary layers to answer questions linked to fundamental atmospheric turbulence research, urban modelling, aircraft safety and cloud physics. Development of PALM started in 1997, the project currently entails 140 kLOC and is used on HPC farms of up to 43,200 cores. The main challenges we faced during the porting process are the size and complexity of the PALM code base, its inconsistent modularisation and the complete lack of a unit-test suite. We report the methods used to identify performance issues as well as our experiences with state-of-the-art profiling tools. Moreover, we outline the required porting steps in order to properly execute our code on GPUs and MIC processors, describe the problems and bottlenecks that we encountered during the porting process, and present separate performance tests for both architectures. These performance tests, however, do not provide any benchmark information that compares the performance of the ported code between the two architectures.}, language = {en} } @inproceedings{CheginiSteinkeWeiser, author = {Chegini, Fatemeh and Steinke, Thomas and Weiser, Martin}, title = {Efficient adaptivity for simulating cardiac electrophysiology with spectral deferred correction methods}, abstract = {The locality of solution features in cardiac electrophysiology simulations calls for adaptive methods. Due to the overhead incurred by established mesh refinement and coarsening, however, such approaches failed in accelerating the computations. Here we investigate a different route to spatial adaptivity that is based on nested subset selection for algebraic degrees of freedom in spectral deferred correction methods. This combination of algebraic adaptivity and iterative solvers for higher order collocation time stepping realizes a multirate integration with minimal overhead. This leads to moderate but significant speedups in both monodomain and cell-by-cell models of cardiac excitation, as demonstrated at four numerical examples.}, language = {en} }