@misc{ErnstSchuetteSigristetal., author = {Ernst, Ariane and Sch{\"u}tte, Christof and Sigrist, Stephan and Winkelmann, Stefanie}, title = {Variance of filtered signals: Characterization for linear reaction networks and application to neurotransmission dynamics}, issn = {1438-0064}, doi = {10.1016/j.mbs.2021.108760}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82674}, abstract = {Neurotransmission at chemical synapses relies on the calcium-induced fusion of synaptic vesicles with the presynaptic membrane. The distance to the calcium channels determines the release probability and thereby the postsynaptic signal. Suitable models of the process need to capture both the mean and the variance observed in electrophysiological measurements of the postsynaptic current. In this work, we propose a method to directly compute the exact first- and second-order moments for signals generated by a linear reaction network under convolution with an impulse response function, rendering computationally expensive numerical simulations of the underlying stochastic counting process obsolete. We show that the autocorrelation of the process is central for the calculation of the filtered signal's second-order moments, and derive a system of PDEs for the cross-correlation functions (including the autocorrelations) of linear reaction networks with time-dependent rates. Finally, we employ our method to efficiently compare different spatial coarse graining approaches for a specific model of synaptic vesicle fusion. Beyond the application to neurotransmission processes, the developed theory can be applied to any linear reaction system that produces a filtered stochastic signal.}, language = {en} } @article{SteudleWinkelmannFuerstetal., author = {Steudle, Gesine and Winkelmann, Stefanie and F{\"u}rst, Steffen and Wolf, Sarah}, title = {Understanding Memory Mechanisms in in Socio-Technical Systems: the Case of an Agent-based Mobility Model}, series = {Advances in Complex Systems}, journal = {Advances in Complex Systems}, doi = {10.17617/2.3562016}, abstract = {This paper explores memory mechanisms in complex socio-technical systems, using a mobility demand model as an example case. We simplified a large-scale agent-based mobility model into a Markov process and discover that the mobility decision process is non-Markovian. This is due to its dependence on the system's history, including social structure and local infrastructure, which evolve based on prior mobility decisions. To make the process Markovian, we extend the state space by incorporating two history-dependent components. Although our model is a very much reduced version of the original one, it remains too complex for the application of usual analytic methods. Instead, we employ simulations to examine the functionalities of the two history-dependent components. We think that the structure of the analyzed stochastic process is exemplary for many socio-technical, -economic, -ecological systems. Additionally, it exhibits analogies with the framework of extended evolution, which has previously been used to study cultural evolution.}, language = {en} } @article{WinkelmannSchuette, author = {Winkelmann, Stefanie and Sch{\"u}tte, Christof}, title = {The Spatiotemporal Master Equation: Approximation of Reaction-Diffusion Dynamics via Markov State Modeling}, series = {Journal of Chemical Physics}, volume = {145}, journal = {Journal of Chemical Physics}, number = {21}, doi = {10.1063/1.4971163}, abstract = {Accurate modeling and numerical simulation of reaction kinetics is a topic of steady interest.We consider the spatiotemporal chemical master equation (ST-CME) as a model for stochastic reaction-diffusion systems that exhibit properties of metastability. The space of motion is decomposed into metastable compartments and diffusive motion is approximated by jumps between these compartments. Treating these jumps as first-order reactions, simulation of the resulting stochastic system is possible by the Gillespie method. We present the theory of Markov state models (MSM) as a theoretical foundation of this intuitive approach. By means of Markov state modeling, both the number and shape of compartments and the transition rates between them can be determined. We consider the ST-CME for two reaction-diffusion systems and compare it to more detailed models. Moreover, a rigorous formal justification of the ST-CME by Galerkin projection methods is presented.}, language = {en} } @misc{WinkelmannSchuette, author = {Winkelmann, Stefanie and Sch{\"u}tte, Christof}, title = {The spatiotemporal master equation: approximation of reaction-diffusion dynamics via Markov state modeling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60999}, abstract = {Accurate modeling and numerical simulation of reaction kinetics is a topic of steady interest. We consider the spatiotemporal chemical master equation (ST-CME) as a model for stochastic reaction-diffusion systems that exhibit properties of metastability. The space of motion is decomposed into metastable compartments and diffusive motion is approximated by jumps between these compartments. Treating these jumps as first-order reactions, simulation of the resulting stochastic system is possible by the Gillespie method. We present the theory of Markov state models (MSM) as a theoretical foundation of this intuitive approach. By means of Markov state modeling, both the number and shape of compartments and the transition rates between them can be determined. We consider the ST-CME for two reaction-diffusion systems and compare it to more detailed models. Moreover, a rigorous formal justification of the ST-CME by Galerkin projection methods is presented.}, language = {en} } @article{EngelOliconMendezWehlitzetal., author = {Engel, Maximilian and Olic{\´o}n-M{\´e}ndez, Guillermo and Wehlitz, Nathalie and Winkelmann, Stefanie}, title = {Synchronization and random attractors in reaction jump processes}, series = {Journal of Dynamics and Differential Equations}, journal = {Journal of Dynamics and Differential Equations}, doi = {10.1007/s10884-023-10345-4}, abstract = {This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. Based on Gillespie's stochastic simulation algorithm, a corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including random jump times. We uncover a time-shifted synchronization in the sense that—after some initial waiting time—one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behavior occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems.}, language = {en} } @article{StraubeWinkelmannSchuetteetal., author = {Straube, Arthur and Winkelmann, Stefanie and Sch{\"u}tte, Christof and H{\"o}fling, Felix}, title = {Stochastic pH oscillations in a model of the urea-urease reaction confined to lipid vesicles}, series = {J. Phys. Chem. Lett.}, volume = {12}, journal = {J. Phys. Chem. Lett.}, doi = {10.1021/acs.jpclett.1c03016}, pages = {9888 -- 9893}, abstract = {The urea-urease clock reaction is a pH switch from acid to basic that can turn into a pH oscillator if it occurs inside a suitable open reactor. We numerically study the confinement of the reaction to lipid vesicles, which permit the exchange with an external reservoir by differential transport, enabling the recovery of the pH level and yielding a constant supply of urea molecules. For microscopically small vesicles, the discreteness of the number of molecules requires a stochastic treatment of the reaction dynamics. Our analysis shows that intrinsic noise induces a significant statistical variation of the oscillation period, which increases as the vesicles become smaller. The mean period, however, is found to be remarkably robust for vesicle sizes down to approximately 200 nm, but the periodicity of the rhythm is gradually destroyed for smaller vesicles. The observed oscillations are explained as a canard-like limit cycle that differs from the wide class of conventional feedback oscillators.}, language = {en} } @book{WinkelmannSchuette, author = {Winkelmann, Stefanie and Sch{\"u}tte, Christof}, title = {Stochastic Dynamics in Computational Biology}, series = {Frontiers in Applied Dynamical Systems: Reviews and Tutorials}, volume = {8}, journal = {Frontiers in Applied Dynamical Systems: Reviews and Tutorials}, publisher = {Springer International Publishing}, isbn = {978-3-030-62386-9}, doi = {10.1007/978-3-030-62387-6}, language = {en} } @article{ErnstUngerSchuetteetal., author = {Ernst, Ariane and Unger, Nathalie and Sch{\"u}tte, Christof and Walter, Alexander and Winkelmann, Stefanie}, title = {Rate-limiting recovery processes in neurotransmission under sustained stimulation}, series = {Mathematical Biosciences}, volume = {362}, journal = {Mathematical Biosciences}, doi = {10.1016/j.mbs.2023.109023}, abstract = {At chemical synapses, an arriving electric signal induces the fusion of vesicles with the presynaptic membrane, thereby releasing neurotransmitters into the synaptic cleft. After a fusion event, both the release site and the vesicle undergo a recovery process before becoming available for reuse again. Of central interest is the question which of the two restoration steps acts as the limiting factor during neurotrans-mission under high-frequency sustained stimulation. In order to investigate this question, we introduce a novel non-linear reaction network which involves explicit recovery steps for both the vesicles and the release sites, and includes the induced time-dependent output current. The associated reaction dynamics are formulated by means of ordinary differential equations (ODEs), as well as via the associated stochastic jump process. While the stochastic jump model describes a single release site, the average over many release sites is close to the ODE solution and shares its periodic structure. The reason for this can be traced back to the insight that recovery dynamics of vesicles and release sites are statistically almost independent. A sensitivity analysis on the recovery rates based on the ODE formulation reveals that neither the vesicle nor the release site recovery step can be identified as the essential rate-limiting step but that the rate- limiting feature changes over the course of stimulation. Under sustained stimulation the dynamics given by the ODEs exhibit transient dynamics leading from an initial depression of the postsynaptic response to an asymptotic periodic orbit, while the individual trajectories of the stochastic jump model lack the oscillatory behavior an asymptotic periodicity of the ODE-solution.}, language = {de} } @article{MontefuscoHelfmannOkunolaetal., author = {Montefusco, Alberto and Helfmann, Luzie and Okunola, Toluwani and Winkelmann, Stefanie and Sch{\"u}tte, Christof}, title = {Partial mean-field model for neurotransmission dynamics}, series = {Mathematical Biosciences}, volume = {369}, journal = {Mathematical Biosciences}, doi = {10.1016/j.mbs.2024.109143}, abstract = {This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction-diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into hybrid models that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the stochastic-spatial particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios.}, language = {en} } @article{DuwalWinkelmannSchuetteetal., author = {Duwal, Sulav and Winkelmann, Stefanie and Sch{\"u}tte, Christof and von Kleist, Max}, title = {Optimal Treatment Strategies in the Context of 'Treatment for Prevention' against HIV/1 in Resource-Poor Settings}, series = {PloS Computational Biology}, volume = {11}, journal = {PloS Computational Biology}, number = {4}, doi = {10.1371/journal.pcbi.1004200}, abstract = {An estimated 2.7 million new HIV-1 infections occurred in 2010. `Treatment-for-prevention' may strongly prevent HIV-1 transmission. The basic idea is that immediate treatment initiation rapidly decreases virus burden, which reduces the number of transmittable viruses and thereby the probability of infection. However, HIV inevitably develops drug resistance, which leads to virus rebound and nullifies the effect of `treatment-for-prevention' for the time it remains unrecognized. While timely conducted treatment changes may avert periods of viral rebound, necessary treatment options and diagnostics may be lacking in resource-constrained settings. Within this work, we provide a mathematical platform for comparing different treatment paradigms that can be applied to many medical phenomena. We use this platform to optimize two distinct approaches for the treatment of HIV-1: (i) a diagnostic-guided treatment strategy, based on infrequent and patient-specific diagnostic schedules and (ii) a pro-active strategy that allows treatment adaptation prior to diagnostic ascertainment. Both strategies are compared to current clinical protocols (standard of care and the HPTN052 protocol) in terms of patient health, economic means and reduction in HIV-1 onward transmission exemplarily for South Africa. All therapeutic strategies are assessed using a coarse-grained stochastic model of within-host HIV dynamics and pseudo-codes for solving the respective optimal control problems are provided. Our mathematical model suggests that both optimal strategies (i)-(ii) perform better than the current clinical protocols and no treatment in terms of economic means, life prolongation and reduction of HIV-transmission. The optimal diagnostic-guided strategy suggests rare diagnostics and performs similar to the optimal pro-active strategy. Our results suggest that 'treatment-for-prevention' may be further improved using either of the two analyzed treatment paradigms.}, language = {en} }