@article{Zachow, author = {Zachow, Stefan}, title = {Computational Planning in Facial Surgery}, series = {Facial Plastic Surgery}, volume = {31}, journal = {Facial Plastic Surgery}, number = {5}, doi = {10.1055/s-0035-1564717}, pages = {446 -- 462}, abstract = {This article reflects the research of the last two decades in computational planning for cranio-maxillofacial surgery. Model-guided and computer-assisted surgery planning has tremendously developed due to ever increasing computational capabilities. Simulators for education, planning, and training of surgery are often compared with flight simulators, where maneuvers are also trained to reduce a possible risk of failure. Meanwhile, digital patient models can be derived from medical image data with astonishing accuracy and thus can serve for model surgery to derive a surgical template model that represents the envisaged result. Computerized surgical planning approaches, however, are often still explorative, meaning that a surgeon tries to find a therapeutic concept based on his or her expertise using computational tools that are mimicking real procedures. Future perspectives of an improved computerized planning may be that surgical objectives will be generated algorithmically by employing mathematical modeling, simulation, and optimization techniques. Planning systems thus act as intelligent decision support systems. However, surgeons can still use the existing tools to vary the proposed approach, but they mainly focus on how to transfer objectives into reality. Such a development may result in a paradigm shift for future surgery planning.}, language = {en} } @misc{LamasRodriguezEhlkeHoffmannetal., author = {Lamas-Rodr{\´i}guez, Juli{\´a}n and Ehlke, Moritz and Hoffmann, Ren{\´e} and Zachow, Stefan}, title = {GPU-accelerated denoising of large tomographic data sets with low SNR}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56339}, abstract = {Enhancements in tomographic imaging techniques facilitate non-destructive methods for visualizing fossil structures. However, to penetrate dense materials such as sediments or pyrites, image acquisition is typically performed with high beam energy and very sensitive image intensifiers, leading to artifacts and noise in the acquired data. The analysis of delicate fossil structures requires the images to be captured in maximum resolution, resulting in large data sets of several giga bytes (GB) in size. Since the structural information of interest is often almost in the same spatial range as artifacts and noise, image processing and segmentation algorithms have to cope with a very low signal-to-noise ratio (SNR). Within this report we present a study on the performance of a collection of denoising algorithms applied to a very noisy fossil dataset. The study shows that a non-local means (NLM) filter, in case it is properly configured, is able to remove a considerable amount of noise while preserving most of the structural information of interest. Based on the results of this study, we developed a software tool within ZIBAmira that denoises large tomographic datasets using an adaptive, GPU-accelerated NLM filter. With the help of our implementation a user can interactively configure the filter's parameters and thus its effectiveness with respect to the data of interest, while the filtering response is instantly visualized for a preselected region of interest (ROI). Our implementation efficiently denoises even large fossil datasets in a reasonable amount of time.}, language = {en} } @article{ZahnGrotjohannRammetal., author = {Zahn, Robert and Grotjohann, Sarah and Ramm, Heiko and Zachow, Stefan and Putzier, Michael and Perka, Carsten and Tohtz, Stephan}, title = {Pelvic tilt compensates for increased acetabular anteversion}, series = {International Orthopaedics}, volume = {40}, journal = {International Orthopaedics}, number = {8}, doi = {10.1007/s00264-015-2949-6}, pages = {1571 -- 1575}, abstract = {Pelvic tilt determines functional orientation of the acetabulum. In this study, we investigated the interaction of pelvic tilt and functional acetabular anteversion (AA) in supine position.}, language = {en} } @incollection{LameckerZachow, author = {Lamecker, Hans and Zachow, Stefan}, title = {Statistical Shape Modeling of Musculoskeletal Structures and Its Applications}, series = {Computational Radiology for Orthopaedic Interventions}, volume = {23}, booktitle = {Computational Radiology for Orthopaedic Interventions}, publisher = {Springer}, isbn = {978-3-319-23481-6}, doi = {10.1007/978-3-319-23482-3}, pages = {1 -- 23}, abstract = {Statistical shape models (SSM) describe the shape variability contained in a given population. They are able to describe large populations of complex shapes with few degrees of freedom. This makes them a useful tool for a variety of tasks that arise in computer-aided madicine. In this chapter we are going to explain the basic methodology of SSMs and present a variety of examples, where SSMs have been successfully applied.}, language = {en} } @article{ZachowHeppt, author = {Zachow, Stefan and Heppt, Werner}, title = {The Facial Profile}, series = {Facial Plastic Surgery}, volume = {31}, journal = {Facial Plastic Surgery}, number = {5}, doi = {10.1055/s-0035-1566132}, pages = {419 -- 420}, abstract = {Facial appearance in our societies is often associated with notions of attractiveness, juvenileness, beauty, success, and so forth. Hence, the role of facial plastic surgery is highly interrelated to a patient's desire to feature many of these positively connoted attributes, which of course, are subject of different cultural perceptions or social trends. To judge about somebody's facial appearance, appropriate quantitative measures as well as methods to obtain and compare individual facial features are required. This special issue on facial profile is intended to provide an overview on how facial characteristics are surgically managed in an interdisciplinary way based on experience, instrumentation, and modern technology to obtain an aesthetic facial appearance with harmonious facial proportions. The facial profile will be discussed within the context of facial aesthetics. Latest concepts for capturing facial morphology in high speed and impressive detail are presented for quantitative analysis of even subtle changes, aging effects, or facial expressions. In addition, the perception of facial profiles is evaluated based on eye tracking technology.}, language = {en} } @inproceedings{RammVictoriaMorilloTodtetal.2013, author = {Ramm, Heiko and Victoria Morillo, Oscar Salvador and Todt, Ingo and Schirmacher, Hartmut and Ernst, Arneborg and Zachow, Stefan and Lamecker, Hans}, title = {Visual Support for Positioning Hearing Implants}, series = {Proceedings of the 12th annual meeting of the CURAC society}, booktitle = {Proceedings of the 12th annual meeting of the CURAC society}, editor = {Freysinger, Wolfgang}, pages = {116 -- 120}, year = {2013}, language = {en} } @article{KainmuellerLameckerHelleretal.2013, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Heller, Markus O. and Weber, Britta and Hege, Hans-Christian and Zachow, Stefan}, title = {Omnidirectional Displacements for Deformable Surfaces}, series = {Medical Image Analysis}, volume = {17}, journal = {Medical Image Analysis}, number = {4}, publisher = {Elsevier}, doi = {10.1016/j.media.2012.11.006}, pages = {429 -- 441}, year = {2013}, language = {en} } @article{LamasRodriguezHerasArgueelloetal.2013, author = {Lamas-Rodr{\´i}guez, Juli{\´a}n and Heras, Dora Blanco and Arg{\"u}ello, Francisco and Kainm{\"u}ller, Dagmar and Zachow, Stefan and B{\´o}o, Montserrat}, title = {GPU-accelerated level-set segmentation}, series = {Journal of Real-Time Image Processing}, journal = {Journal of Real-Time Image Processing}, publisher = {Springer Berlin Heidelberg}, issn = {1861-8200}, doi = {10.1007/s11554-013-0378-6}, pages = {1 -- 15}, year = {2013}, language = {en} } @article{HoffmannSchultzSchellhornetal., author = {Hoffmann, Ren{\´e} and Schultz, Julia A. and Schellhorn, Rico and Rybacki, Erik and Keupp, Helmut and Gerden, S. R. and Lemanis, Robert and Zachow, Stefan}, title = {Non-invasive imaging methods applied to neo- and paleontological cephalopod research}, series = {Biogeosciences}, volume = {11}, journal = {Biogeosciences}, number = {10}, doi = {10.5194/bg-11-2721-2014}, pages = {2721 -- 2739}, abstract = {Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied.}, language = {en} } @inproceedings{vonBergDworzakKlinderetal.2011, author = {von Berg, Jens and Dworzak, Jalda and Klinder, Tobias and Manke, Dirk and Lamecker, Hans and Zachow, Stefan and Lorenz, Cristian}, title = {Temporal Subtraction of Chest Radiographs Compensating Pose Differences}, series = {SPIE Medical Imaging}, booktitle = {SPIE Medical Imaging}, year = {2011}, language = {en} } @inproceedings{BindernagelKainmuellerSeimetal.2011, author = {Bindernagel, Matthias and Kainm{\"u}ller, Dagmar and Seim, Heiko and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian}, title = {An Articulated Statistical Shape Model of the Human Knee}, series = {Bildverarbeitung f{\"u}r die Medizin 2011}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2011}, publisher = {Springer}, doi = {10.1007/978-3-642-19335-4_14}, pages = {59 -- 63}, year = {2011}, language = {en} } @inproceedings{KahntGallowaySeimetal.2011, author = {Kahnt, Max and Galloway, Francis and Seim, Heiko and Lamecker, Hans and Taylor, Mark and Zachow, Stefan}, title = {Robust and Intuitive Meshing of Bone-Implant Compounds}, series = {CURAC}, booktitle = {CURAC}, address = {Magdeburg}, pages = {71 -- 74}, year = {2011}, language = {en} } @misc{SKGBSetal.2011, author = {SK, Saevarsson and GB, Sharma and S, Montgomery and KCT, Ho and Ramm, Heiko and Lieck, Robert and Zachow, Stefan and C, Anglin}, title = {Kinematic Comparison Between Gender Specific and Traditional Femoral Implants}, series = {Proceedings of the 11th Alberta Biomedical Engineering (BME) Conference (Poster)}, journal = {Proceedings of the 11th Alberta Biomedical Engineering (BME) Conference (Poster)}, pages = {80}, year = {2011}, language = {en} } @incollection{DeuflhardDoesselLouisetal.2008, author = {Deuflhard, Peter and D{\"o}ssel, Olaf and Louis, Alfred and Zachow, Stefan}, title = {Mehr Mathematik wagen in der Medizin}, series = {acatech diskutiert, Produktionsfaktor Mathematik - Wie Mathematik Technik und Wirtschaft bewegt}, booktitle = {acatech diskutiert, Produktionsfaktor Mathematik - Wie Mathematik Technik und Wirtschaft bewegt}, publisher = {Springer}, doi = {10.1007/978-3-540-89435-3}, pages = {435 -- 459}, year = {2008}, language = {en} } @inproceedings{KainmuellerLameckerZachowetal.2008, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian}, title = {Coupling Deformable Models for Multi-object Segmentation}, series = {Proc. Int. Symp. on Computational Models for Biomedical Simulation (ISBMS)}, booktitle = {Proc. Int. Symp. on Computational Models for Biomedical Simulation (ISBMS)}, doi = {10.1007/978-3-540-70521-5_8}, pages = {69 -- 78}, year = {2008}, language = {en} } @inproceedings{KainmuellerLameckerZachowetal.2008, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Zachow, Stefan and Heller, Markus O. and Hege, Hans-Christian}, title = {Multi-Object Segmentation with Coupled Deformable Models}, series = {Proc. Medical Image Understanding and Analysis}, booktitle = {Proc. Medical Image Understanding and Analysis}, pages = {34 -- 38}, year = {2008}, language = {en} } @inproceedings{SeimKainmuellerKussetal.2008, author = {Seim, Heiko and Kainm{\"u}ller, Dagmar and Kuss, Anja and Lamecker, Hans and Zachow, Stefan and Menzel, Randolf and Rybak, Juergen}, title = {Model-based autosegmentation of the central brain of the honeybee, Apis mellifera, using active statistical shape models}, series = {Proc. 1st INCF Congress of Neuroinformatics: Databasing and Modeling the Brain}, booktitle = {Proc. 1st INCF Congress of Neuroinformatics: Databasing and Modeling the Brain}, doi = {10.3389/conf.neuro.11.2008.01.064}, year = {2008}, language = {en} } @inproceedings{DworzakLameckervonBergetal.2008, author = {Dworzak, Jalda and Lamecker, Hans and von Berg, Jens and Klinder, Tobias and Lorenz, Cristian and Kainm{\"u}ller, Dagmar and Seim, Heiko and Hege, Hans-Christian and Zachow, Stefan}, title = {Towards model-based 3-D reconstruction of the human rib cage from radiographs}, series = {Proc. 7. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer-Roboterassistierte Chirurgie (CURAC)}, booktitle = {Proc. 7. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer-Roboterassistierte Chirurgie (CURAC)}, pages = {193 -- 196}, year = {2008}, language = {en} } @inproceedings{SeimKainmuellerHelleretal.2008, author = {Seim, Heiko and Kainm{\"u}ller, Dagmar and Heller, Markus O. and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian}, title = {Automatic Segmentation of the Pelvic Bones from CT Data Based on a Statistical Shape Model}, series = {Eurographics Workshop on Visual Computing for Biomedicine (VCBM)}, booktitle = {Eurographics Workshop on Visual Computing for Biomedicine (VCBM)}, address = {Delft, Netherlands}, pages = {93 -- 100}, year = {2008}, language = {en} } @incollection{DeuflhardDoesselLouisetal.2010, author = {Deuflhard, Peter and D{\"o}ssel, Olaf and Louis, Alfred and Zachow, Stefan}, title = {More Mathematics into Medicine!}, series = {Production Factor Mathematics}, booktitle = {Production Factor Mathematics}, publisher = {Springer}, pages = {357 -- 378}, year = {2010}, language = {en} }