@article{SahuMukhopadhyaySzengeletal., author = {Sahu, Manish and Mukhopadhyay, Anirban and Szengel, Angelika and Zachow, Stefan}, title = {Addressing multi-label imbalance problem of Surgical Tool Detection using CNN}, series = {International Journal of Computer Assisted Radiology and Surgery}, volume = {12}, journal = {International Journal of Computer Assisted Radiology and Surgery}, number = {6}, publisher = {Springer}, doi = {10.1007/s11548-017-1565-x}, pages = {1013 -- 1020}, abstract = {Purpose: A fully automated surgical tool detection framework is proposed for endoscopic video streams. State-of-the-art surgical tool detection methods rely on supervised one-vs-all or multi-class classification techniques, completely ignoring the co-occurrence relationship of the tools and the associated class imbalance. Methods: In this paper, we formulate tool detection as a multi-label classification task where tool co-occurrences are treated as separate classes. In addition, imbalance on tool co-occurrences is analyzed and stratification techniques are employed to address the imbalance during Convolutional Neural Network (CNN) training. Moreover, temporal smoothing is introduced as an online post-processing step to enhance run time prediction. Results: Quantitative analysis is performed on the M2CAI16 tool detection dataset to highlight the importance of stratification, temporal smoothing and the overall framework for tool detection. Conclusion: The analysis on tool imbalance, backed by the empirical results indicates the need and superiority of the proposed framework over state-of-the-art techniques.}, language = {en} } @article{SchenklMuggenthalerHubigetal.2017, author = {Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Erdmann, Bodo and Weiser, Martin and Zachow, Stefan and Heinrich, Andreas and G{\"u}ttler, Felix Victor and Teichgr{\"a}ber, Ulf and Mall, Gita}, title = {Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis}, series = {International Journal of Legal Medicine}, volume = {131}, journal = {International Journal of Legal Medicine}, number = {3}, doi = {doi:10.1007/s00414-016-1523-0}, pages = {699 -- 712}, year = {2017}, abstract = {Temperature based death time estimation is based either on simple phenomenological models of corpse cooling or on detailed physical heat transfer models. The latter are much more complex, but allow a higher accuracy of death time estimation as in principle all relevant cooling mechanisms can be taken into account. Here, a complete work flow for finite element based cooling simulation models is presented. The following steps are demonstrated on CT-phantoms: • CT-scan • Segmentation of the CT images for thermodynamically relevant features of individual geometries • Conversion of the segmentation result into a Finite Element (FE) simulation model • Computation of the model cooling curve • Calculation of the cooling time For the first time in FE-based cooling time estimation the steps from the CT image over segmentation to FE model generation are semi-automatically performed. The cooling time calculation results are compared to cooling measurements performed on the phantoms under controlled conditions. In this context, the method is validated using different CTphantoms. Some of the CT phantoms thermodynamic material parameters had to be experimentally determined via independent experiments. Moreover the impact of geometry and material parameter uncertainties on the estimated cooling time is investigated by a sensitivity analysis.}, language = {en} } @misc{SahuDillMukhopadyayetal., author = {Sahu, Manish and Dill, Sabrina and Mukhopadyay, Anirban and Zachow, Stefan}, title = {Surgical Tool Presence Detection for Cataract Procedures}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69110}, abstract = {This article outlines the submission to the CATARACTS challenge for automatic tool presence detection [1]. Our approach for this multi-label classification problem comprises labelset-based sampling, a CNN architecture and temporal smothing as described in [3], which we call ZIB-Res-TS.}, language = {en} } @article{WilsonAnglinAmbellanetal., author = {Wilson, David and Anglin, Carolyn and Ambellan, Felix and Grewe, Carl Martin and Tack, Alexander and Lamecker, Hans and Dunbar, Michael and Zachow, Stefan}, title = {Validation of three-dimensional models of the distal femur created from surgical navigation point cloud data for intraoperative and postoperative analysis of total knee arthroplasty}, series = {International Journal of Computer Assisted Radiology and Surgery}, volume = {12}, journal = {International Journal of Computer Assisted Radiology and Surgery}, number = {12}, publisher = {Springer}, doi = {10.1007/s11548-017-1630-5}, pages = {2097 -- 2105}, abstract = {Purpose: Despite the success of total knee arthroplasty there continues to be a significant proportion of patients who are dissatisfied. One explanation may be a shape mismatch between pre and post-operative distal femurs. The purpose of this study was to investigate a method to match a statistical shape model (SSM) to intra-operatively acquired point cloud data from a surgical navigation system, and to validate it against the pre-operative magnetic resonance imaging (MRI) data from the same patients. Methods: A total of 10 patients who underwent navigated total knee arthroplasty also had an MRI scan less than 2 months pre-operatively. The standard surgical protocol was followed which included partial digitization of the distal femur. Two different methods were employed to fit the SSM to the digitized point cloud data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). The available MRI data were manually segmented and the reconstructed three-dimensional surfaces used as ground truth against which the statistical shape model fit was compared. Results: For both approaches, the difference between the statistical shape model-generated femur and the surface generated from MRI segmentation averaged less than 1.7 mm, with maximum errors occurring in less clinically important areas. Conclusion: The results demonstrated good correspondence with the distal femoral morphology even in cases of sparse data sets. Application of this technique will allow for measurement of mismatch between pre and post-operative femurs retrospectively on any case done using the surgical navigation system and could be integrated into the surgical navigation unit to provide real-time feedback.}, language = {en} } @misc{GreweZachow, author = {Grewe, Carl Martin and Zachow, Stefan}, title = {Face to Face-Interface}, series = {+ultra. Knowledge \& Gestaltung}, journal = {+ultra. Knowledge \& Gestaltung}, editor = {Doll, Nikola and Bredekamp, Horst and Sch{\"a}ffner, Wolfgang}, publisher = {Seemann Henschel}, pages = {320 -- 321}, language = {en} } @article{ZahnGrotjohannRammetal., author = {Zahn, Robert and Grotjohann, Sarah and Ramm, Heiko and Zachow, Stefan and Pumberger, Matthias and Putzier, Michael and Perka, Carsten and Tohtz, Stephan}, title = {Influence of pelvic tilt on functional acetabular orientation}, series = {Technology and Health Care}, volume = {25}, journal = {Technology and Health Care}, number = {3}, publisher = {IOS Press}, doi = {10.3233/THC-161281}, pages = {557 -- 565}, language = {en} } @article{LemanisKornZachowetal., author = {Lemanis, Robert and Korn, Dieter and Zachow, Stefan and Rybacki, Erik and Hoffmann, Ren{\´e}}, title = {The Evolution and Development of Cephalopod Chambers and Their Shape}, series = {PLOS ONE}, volume = {11}, journal = {PLOS ONE}, number = {3}, doi = {10.1371/journal.pone.0151404}, abstract = {The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth.}, language = {en} } @article{DunlopApanaskevichLehmannetal.2016, author = {Dunlop, Jason and Apanaskevich, Dmitry and Lehmann, Jens and Hoffmann, Rene and Fusseis, Florian and Ehlke, Moritz and Zachow, Stefan and Xiao, Xianghui}, title = {Microtomography of the Baltic amber tick Ixodes succineus reveals affinities with the modern Asian disease vector Ixodes ovatus}, series = {BMC Evolutionary Biology}, volume = {16}, journal = {BMC Evolutionary Biology}, number = {1}, doi = {10.1186/s12862-016-0777-y}, year = {2016}, abstract = {Background: Fossil ticks are extremely rare, whereby Ixodes succineus Weidner, 1964 from Eocene (ca. 44-49 Ma) Baltic amber is one of the oldest examples of a living hard tick genus (Ixodida: Ixodidae). Previous work suggested it was most closely related to the modern and widespread European sheep tick Ixodes ricinus (Linneaus, 1758). Results: Restudy using phase contrast synchrotron x-ray tomography yielded images of exceptional quality. These confirm the fossil's referral to Ixodes Latreille, 1795, but the characters resolved here suggest instead affinities with the Asian subgenus Partipalpiger Hoogstraal et al., 1973 and its single living (and medically significant) species Ixodes ovatus Neumann, 1899. We redescribe the amber fossil here as Ixodes (Partipalpiger) succineus. Conclusions: Our data suggest that Ixodes ricinus is unlikely to be directly derived from Weidner's amber species, but instead reveals that the Partipalpiger lineage was originally more widely distributed across the northern hemisphere. The closeness of Ixodes (P.) succineus to a living vector of a wide range of pathogens offers the potential to correlate its spatial and temporal position (northern Europe, nearly 50 million years ago) with the estimated origination dates of various tick-borne diseases.}, language = {en} } @article{BernardSalamancaThunbergetal., author = {Bernard, Florian and Salamanca, Luis and Thunberg, Johan and Tack, Alexander and Jentsch, Dennis and Lamecker, Hans and Zachow, Stefan and Hertel, Frank and Goncalves, Jorge and Gemmar, Peter}, title = {Shape-aware Surface Reconstruction from Sparse Data}, series = {arXiv}, journal = {arXiv}, pages = {1602.08425v1}, abstract = {The reconstruction of an object's shape or surface from a set of 3D points is a common topic in materials and life sciences, computationally handled in computer graphics. Such points usually stem from optical or tactile 3D coordinate measuring equipment. Surface reconstruction also appears in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or the alignment of intra-operative navigation and preoperative planning data. In contrast to mere 3D point clouds, medical imaging yields contextual information on the 3D point data that can be used to adopt prior information on the shape that is to be reconstructed from the measurements. In this work we propose to use a statistical shape model (SSM) as a prior for surface reconstruction. The prior knowledge is represented by a point distribution model (PDM) that is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we reformulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given measurements are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are oriented according to the surface normals at the PDM points, a surface-based tting is accomplished. By estimating the parameters of the GMM in a maximum a posteriori manner, the reconstruction of the surface from the given measurements is achieved. Extensive experiments suggest that our proposed approach leads to superior surface reconstructions compared to Iterative Closest Point (ICP) methods.}, language = {en} } @article{LemanisZachowHoffmann, author = {Lemanis, Robert and Zachow, Stefan and Hoffmann, Ren{\´e}}, title = {Comparative cephalopod shell strength and the role of septum morphology on stress distribution}, series = {PeerJ}, volume = {4}, journal = {PeerJ}, doi = {10.7717/peerj.2434}, pages = {e2434}, abstract = {The evolution of complexly folded septa in ammonoids has long been a controversial topic. Explanations of the function of these folded septa can be divided into physiological and mechanical hypotheses with the mechanical functions tending to find widespread support. The complexity of the cephalopod shell has made it difficult to directly test the mechanical properties of these structures without oversimplification of the septal morphology or extraction of a small sub-domain. However, the power of modern finite element analysis now permits direct testing of mechanical hypothesis on complete, empirical models of the shells taken from computed tomographic data. Here we compare, for the first time using empirical models, the capability of the shells of extant Nautilus pompilius, Spirula spirula, and the extinct ammonite Cadoceras sp. to withstand hydrostatic pressure and point loads. Results show hydrostatic pressure imparts highest stress on the final septum with the rest of the shell showing minimal compression. S. spirula shows the lowest stress under hydrostatic pressure while N. pompilius shows the highest stress. Cadoceras sp. shows the development of high stress along the attachment of the septal saddles with the shell wall. Stress due to point loads decreases when the point force is directed along the suture as opposed to the unsupported chamber wall. Cadoceras sp. shows the greatest decrease in stress between the point loads compared to all other models. Greater amplitude of septal flutes corresponds with greater stress due to hydrostatic pressure; however, greater amplitude decreases the stress magnitude of point loads directed along the suture. In our models, sutural complexity does not predict greater resistance to hydrostatic pressure but it does seem to increase resistance to point loads, such as would be from predators. This result permits discussion of palaeoecological reconstructions on the basis of septal morphology. We further suggest that the ratio used to characterize septal morphology in the septal strength index and in calculations of tensile strength of nacre are likely insufficient. A better understanding of the material properties of cephalopod nacre may allow the estimation of maximum depth limits of shelled cephalopods through finite element analysis.}, language = {en} } @inproceedings{MukhopadhyayMorilloZachowetal., author = {Mukhopadhyay, Anirban and Morillo, Oscar and Zachow, Stefan and Lamecker, Hans}, title = {Robust and Accurate Appearance Models Based on Joint Dictionary Learning Data from the Osteoarthritis Initiative}, series = {Lecture Notes in Computer Science, Patch-Based Techniques in Medical Imaging. Patch-MI 2016}, volume = {9993}, booktitle = {Lecture Notes in Computer Science, Patch-Based Techniques in Medical Imaging. Patch-MI 2016}, doi = {10.1007/978-3-319-47118-1_4}, pages = {25 -- 33}, abstract = {Deformable model-based approaches to 3D image segmentation have been shown to be highly successful. Such methodology requires an appearance model that drives the deformation of a geometric model to the image data. Appearance models are usually either created heuristically or through supervised learning. Heuristic methods have been shown to work effectively in many applications but are hard to transfer from one application (imaging modality/anatomical structure) to another. On the contrary, supervised learning approaches can learn patterns from a collection of annotated training data. In this work, we show that the supervised joint dictionary learning technique is capable of overcoming the traditional drawbacks of the heuristic approaches. Our evaluation based on two different applications (liver/CT and knee/MR) reveals that our approach generates appearance models, which can be used effectively and efficiently in a deformable model-based segmentation framework.}, language = {en} } @incollection{LameckerZachow, author = {Lamecker, Hans and Zachow, Stefan}, title = {Statistical Shape Modeling of Musculoskeletal Structures and Its Applications}, series = {Computational Radiology for Orthopaedic Interventions}, volume = {23}, booktitle = {Computational Radiology for Orthopaedic Interventions}, publisher = {Springer}, isbn = {978-3-319-23481-6}, doi = {10.1007/978-3-319-23482-3}, pages = {1 -- 23}, abstract = {Statistical shape models (SSM) describe the shape variability contained in a given population. They are able to describe large populations of complex shapes with few degrees of freedom. This makes them a useful tool for a variety of tasks that arise in computer-aided madicine. In this chapter we are going to explain the basic methodology of SSMs and present a variety of examples, where SSMs have been successfully applied.}, language = {en} } @misc{TycowiczAmbellanMukhopadhyayetal., author = {Tycowicz, Christoph von and Ambellan, Felix and Mukhopadhyay, Anirban and Zachow, Stefan}, title = {A Riemannian Statistical Shape Model using Differential Coordinates}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61175}, abstract = {We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidian structure. A key advantage of our framework is that statistics in a manifold shape space become numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidian approach in terms of shape-based classification of morphological disorders.}, language = {en} } @inproceedings{GreweZachow, author = {Grewe, Carl Martin and Zachow, Stefan}, title = {Fully Automated and Highly Accurate Dense Correspondence for Facial Surfaces}, series = {Computer Vision - ECCV 2016 Workshops}, volume = {9914}, booktitle = {Computer Vision - ECCV 2016 Workshops}, publisher = {Springer International Publishing}, doi = {10.1007/978-3-319-48881-3_38}, pages = {552 -- 568}, abstract = {We present a novel framework for fully automated and highly accurate determination of facial landmarks and dense correspondence, e.g. a topologically identical mesh of arbitrary resolution, across the entire surface of 3D face models. For robustness and reliability of the proposed approach, we are combining 2D landmark detectors and 3D statistical shape priors with a variational matching method. Instead of matching faces in the spatial domain only, we employ image registration to align the 2D parametrization of the facial surface to a planar template we call the Unified Facial Parameter Domain (ufpd). This allows us to simultaneously match salient photometric and geometric facial features using robust image similarity measures while reasonably constraining geometric distortion in regions with less significant features. We demonstrate the accuracy of the dense correspondence established by our framework on the BU3DFE database with 2500 facial surfaces and show, that our framework outperforms current state-of-the-art methods with respect to the fully automated location of facial landmarks.}, language = {en} } @article{Zachow, author = {Zachow, Stefan}, title = {Computational Planning in Facial Surgery}, series = {Facial Plastic Surgery}, volume = {31}, journal = {Facial Plastic Surgery}, number = {5}, doi = {10.1055/s-0035-1564717}, pages = {446 -- 462}, abstract = {This article reflects the research of the last two decades in computational planning for cranio-maxillofacial surgery. Model-guided and computer-assisted surgery planning has tremendously developed due to ever increasing computational capabilities. Simulators for education, planning, and training of surgery are often compared with flight simulators, where maneuvers are also trained to reduce a possible risk of failure. Meanwhile, digital patient models can be derived from medical image data with astonishing accuracy and thus can serve for model surgery to derive a surgical template model that represents the envisaged result. Computerized surgical planning approaches, however, are often still explorative, meaning that a surgeon tries to find a therapeutic concept based on his or her expertise using computational tools that are mimicking real procedures. Future perspectives of an improved computerized planning may be that surgical objectives will be generated algorithmically by employing mathematical modeling, simulation, and optimization techniques. Planning systems thus act as intelligent decision support systems. However, surgeons can still use the existing tools to vary the proposed approach, but they mainly focus on how to transfer objectives into reality. Such a development may result in a paradigm shift for future surgery planning.}, language = {en} } @misc{LamasRodriguezEhlkeHoffmannetal., author = {Lamas-Rodr{\´i}guez, Juli{\´a}n and Ehlke, Moritz and Hoffmann, Ren{\´e} and Zachow, Stefan}, title = {GPU-accelerated denoising of large tomographic data sets with low SNR}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56339}, abstract = {Enhancements in tomographic imaging techniques facilitate non-destructive methods for visualizing fossil structures. However, to penetrate dense materials such as sediments or pyrites, image acquisition is typically performed with high beam energy and very sensitive image intensifiers, leading to artifacts and noise in the acquired data. The analysis of delicate fossil structures requires the images to be captured in maximum resolution, resulting in large data sets of several giga bytes (GB) in size. Since the structural information of interest is often almost in the same spatial range as artifacts and noise, image processing and segmentation algorithms have to cope with a very low signal-to-noise ratio (SNR). Within this report we present a study on the performance of a collection of denoising algorithms applied to a very noisy fossil dataset. The study shows that a non-local means (NLM) filter, in case it is properly configured, is able to remove a considerable amount of noise while preserving most of the structural information of interest. Based on the results of this study, we developed a software tool within ZIBAmira that denoises large tomographic datasets using an adaptive, GPU-accelerated NLM filter. With the help of our implementation a user can interactively configure the filter's parameters and thus its effectiveness with respect to the data of interest, while the filtering response is instantly visualized for a preselected region of interest (ROI). Our implementation efficiently denoises even large fossil datasets in a reasonable amount of time.}, language = {en} } @article{ZahnGrotjohannRammetal., author = {Zahn, Robert and Grotjohann, Sarah and Ramm, Heiko and Zachow, Stefan and Putzier, Michael and Perka, Carsten and Tohtz, Stephan}, title = {Pelvic tilt compensates for increased acetabular anteversion}, series = {International Orthopaedics}, volume = {40}, journal = {International Orthopaedics}, number = {8}, doi = {10.1007/s00264-015-2949-6}, pages = {1571 -- 1575}, abstract = {Pelvic tilt determines functional orientation of the acetabulum. In this study, we investigated the interaction of pelvic tilt and functional acetabular anteversion (AA) in supine position.}, language = {en} } @article{ZachowHeppt, author = {Zachow, Stefan and Heppt, Werner}, title = {The Facial Profile}, series = {Facial Plastic Surgery}, volume = {31}, journal = {Facial Plastic Surgery}, number = {5}, doi = {10.1055/s-0035-1566132}, pages = {419 -- 420}, abstract = {Facial appearance in our societies is often associated with notions of attractiveness, juvenileness, beauty, success, and so forth. Hence, the role of facial plastic surgery is highly interrelated to a patient's desire to feature many of these positively connoted attributes, which of course, are subject of different cultural perceptions or social trends. To judge about somebody's facial appearance, appropriate quantitative measures as well as methods to obtain and compare individual facial features are required. This special issue on facial profile is intended to provide an overview on how facial characteristics are surgically managed in an interdisciplinary way based on experience, instrumentation, and modern technology to obtain an aesthetic facial appearance with harmonious facial proportions. The facial profile will be discussed within the context of facial aesthetics. Latest concepts for capturing facial morphology in high speed and impressive detail are presented for quantitative analysis of even subtle changes, aging effects, or facial expressions. In addition, the perception of facial profiles is evaluated based on eye tracking technology.}, language = {en} } @inproceedings{EhlkeFrenzelRammetal., author = {Ehlke, Moritz and Frenzel, Thomas and Ramm, Heiko and Shandiz, Mohsen Akbari and Anglin, Carolyn and Zachow, Stefan}, title = {Towards Robust Measurement Of Pelvic Parameters From AP Radiographs Using Articulated 3D Models}, series = {Computer Assisted Radiology and Surgery (CARS)}, booktitle = {Computer Assisted Radiology and Surgery (CARS)}, abstract = {Patient-specific parameters such as the orientation of the acetabulum or pelvic tilt are useful for custom planning for total hip arthroplasty (THA) and for evaluating the outcome of surgical interventions. The gold standard in obtaining pelvic parameters is from three-dimensional (3D) computed tomography (CT) imaging. However, this adds time and cost, exposes the patient to a substantial radiation dose, and does not allow for imaging under load (e.g. while the patient is standing). If pelvic parameters could be reliably derived from the standard anteroposterior (AP) radiograph, preoperative planning would be more widespread, and research analyses could be applied to retrospective data, after a postoperative issue is discovered. The goal of this work is to enable robust measurement of two surgical parameters of interest: the tilt of the anterior pelvic plane (APP) and the orientation of the natural acetabulum. We present a computer-aided reconstruction method to determine the APP and natural acetabular orientation from a single, preoperative X-ray. It can easily be extended to obtain other important preoperative and postoperative parameters solely based on a single AP radiograph.}, language = {en} } @misc{EhlkeFrenzelRammetal., author = {Ehlke, Moritz and Frenzel, Thomas and Ramm, Heiko and Shandiz, Mohsen Akbari and Anglin, Carolyn and Zachow, Stefan}, title = {Towards Robust Measurement of Pelvic Parameters from AP Radiographs using Articulated 3D Models}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53707}, abstract = {Patient-specific parameters such as the orientation of the acetabulum or pelvic tilt are useful for custom planning for total hip arthroplasty (THA) and for evaluating the outcome of surgical interventions. The gold standard in obtaining pelvic parameters is from three-dimensional (3D) computed tomography (CT) imaging. However, this adds time and cost, exposes the patient to a substantial radiation dose, and does not allow for imaging under load (e.g. while the patient is standing). If pelvic parameters could be reliably derived from the standard anteroposterior (AP) radiograph, preoperative planning would be more widespread, and research analyses could be applied to retrospective data, after a postoperative issue is discovered. The goal of this work is to enable robust measurement of two surgical parameters of interest: the tilt of the anterior pelvic plane (APP) and the orientation of the natural acetabulum. We present a computer-aided reconstruction method to determine the APP and natural acetabular orientation from a single, preoperative X-ray. It can easily be extended to obtain other important preoperative and postoperative parameters solely based on a single AP radiograph.}, language = {en} }