@inproceedings{GladilinZachowDeuflhardetal.2001, author = {Gladilin, Evgeny and Zachow, Stefan and Deuflhard, Peter and Hege, Hans-Christian}, title = {A Biomechanical Model for Soft Tissue Simulation in Craniofacial Surgery}, series = {Medical Imaging and Augmented Reality (MIAR)}, booktitle = {Medical Imaging and Augmented Reality (MIAR)}, address = {Hong Kong, China}, doi = {10.1109/MIAR.2001.930276}, pages = {137 -- 141}, year = {2001}, language = {en} } @inproceedings{GladilinZachowDeuflhardetal.2001, author = {Gladilin, Evgeny and Zachow, Stefan and Deuflhard, Peter and Hege, Hans-Christian}, title = {Virtual Fibers: A Robust Approach for Muscle Simulation}, series = {IX Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON)}, booktitle = {IX Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON)}, address = {Pula, Croatia}, pages = {961 -- 964}, year = {2001}, language = {en} } @inproceedings{GladilinZachowDeuflhardetal.2001, author = {Gladilin, Evgeny and Zachow, Stefan and Deuflhard, Peter and Hege, Hans-Christian}, title = {Validierung eines linear elastischen Modells f{\"u}r die Weichgewebesimulation in der Mund-Kiefer-Gesichtschirurgie}, series = {Bildverarbeitung f{\"u}r die Medizin (BVM)}, booktitle = {Bildverarbeitung f{\"u}r die Medizin (BVM)}, address = {L{\"u}beck, Germany}, pages = {57 -- 61}, year = {2001}, language = {en} } @inproceedings{GladilinZachowDeuflhardetal.2001, author = {Gladilin, Evgeny and Zachow, Stefan and Deuflhard, Peter and Hege, Hans-Christian}, title = {Validation of a Linear Elastic Model for Soft Tissue Simulation in Craniofacial Surgery}, series = {Proc. SPIE Medical Imaging 2001}, volume = {4319}, booktitle = {Proc. SPIE Medical Imaging 2001}, editor = {Mun, Seong}, address = {San Diego, USA}, doi = {10.1117/12.428061}, pages = {27 -- 35}, year = {2001}, language = {en} } @inproceedings{GladilinZachowHegeetal.2001, author = {Gladilin, Evgeny and Zachow, Stefan and Hege, Hans-Christian and Deuflhard, Peter}, title = {FE-based heuristic approach for the estimation of person-specific facial mimics}, series = {Proceedings of Euro-Par 2001: 5-th International Symposium on Computer Methods}, booktitle = {Proceedings of Euro-Par 2001: 5-th International Symposium on Computer Methods}, address = {Rome, Italy}, year = {2001}, language = {en} } @inproceedings{ZachowLuethStallingetal.1999, author = {Zachow, Stefan and Lueth, Tim and Stalling, Detlev and Hein, Andreas and Klein, Martin and Menneking, Horst}, title = {Optimized Arrangement of Osseointegrated Implants: A Surgical Planning System for the Fixation of Facial Protheses}, series = {Computer Assisted Radiology and Surgery (CARS'99)}, booktitle = {Computer Assisted Radiology and Surgery (CARS'99)}, publisher = {Elsevier Science B.V.}, pages = {942 -- 946}, year = {1999}, language = {en} } @inproceedings{HeinLuethZachowetal.1999, author = {Hein, Andreas and Lueth, Tim and Zachow, Stefan and Stien, Malte}, title = {A 2D Planning Sytem for Robot-Assisted Interventions}, series = {Computer Assisted Radiology and Surgery}, booktitle = {Computer Assisted Radiology and Surgery}, publisher = {Elsevier Science B.V.}, pages = {1049}, year = {1999}, language = {en} } @article{EhlkeRammLameckeretal.2013, author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Hege, Hans-Christian and Zachow, Stefan}, title = {Fast Generation of Virtual X-ray Images for Reconstruction of 3D Anatomy}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {19}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {12}, doi = {10.1109/TVCG.2013.159}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-35928}, pages = {2673 -- 2682}, year = {2013}, language = {en} } @misc{Zachow1999, type = {Master Thesis}, author = {Zachow, Stefan}, title = {Design and Implementation of a planning system for episthetic surgery}, year = {1999}, language = {en} } @phdthesis{Zachow2005, author = {Zachow, Stefan}, title = {Computer assisted osteotomy planning in cranio-maxillofacial surgery under consideration of facial soft tissue changes}, year = {2005}, language = {en} } @inproceedings{HoffmannZachow2011, author = {Hoffmann, Ren{\´e} and Zachow, Stefan}, title = {Non-invasive approach to shed new light on the buoyancy business of chambered cephalopods (Mollusca)}, series = {Proc. of the Intl. Assoc. for Mathematical Geosciences, Salzburg}, booktitle = {Proc. of the Intl. Assoc. for Mathematical Geosciences, Salzburg}, doi = {10.5242/iamg.2011.0163}, pages = {1 -- 11}, year = {2011}, language = {en} } @article{RybakKussLameckeretal.2010, author = {Rybak, J{\"u}rgen and Kuß, Anja and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian and Lienhard, Matthias and Singer, Jochen and Neubert, Kerstin and Menzel, Randolf}, title = {The Digital Bee Brain: Integrating and Managing Neurons in a Common 3D Reference System}, series = {Front. Syst. Neurosci.}, volume = {4}, journal = {Front. Syst. Neurosci.}, number = {30}, doi = {10.3389/fnsys.2010.00030}, year = {2010}, language = {en} } @article{GallowayKahntRammetal.2013, author = {Galloway, Francis and Kahnt, Max and Ramm, Heiko and Worsley, Peter and Zachow, Stefan and Nair, Prasanth and Taylor, Mark}, title = {A large scale finite element study of a cementless osseointegrated tibial tray}, series = {Journal of Biomechanics}, volume = {46}, journal = {Journal of Biomechanics}, number = {11}, doi = {/10.1016/j.jbiomech.2013.04.021}, pages = {1900 -- 1906}, year = {2013}, language = {en} } @article{ZachowLameckerZoeckleretal.2009, author = {Zachow, Stefan and Lamecker, Hans and Z{\"o}ckler, Maja and Haberl, Ernst}, title = {Computergest{\"u}tzte Planung zur chirurgischen Korrektur von fr{\"u}hkindlichen Sch{\"a}delfehlbildungen (Craniosynostosen)}, series = {Face 02/09, Int. Mag. of Orofacial Esthetics, Oemus Journale Leipzig}, journal = {Face 02/09, Int. Mag. of Orofacial Esthetics, Oemus Journale Leipzig}, pages = {48 -- 53}, year = {2009}, language = {en} } @article{ZahnGrotjohannRammetal., author = {Zahn, Robert and Grotjohann, Sarah and Ramm, Heiko and Zachow, Stefan and Pumberger, Matthias and Putzier, Michael and Perka, Carsten and Tohtz, Stephan}, title = {Influence of pelvic tilt on functional acetabular orientation}, series = {Technology and Health Care}, volume = {25}, journal = {Technology and Health Care}, number = {3}, publisher = {IOS Press}, doi = {10.3233/THC-161281}, pages = {557 -- 565}, language = {en} } @article{LemanisKornZachowetal., author = {Lemanis, Robert and Korn, Dieter and Zachow, Stefan and Rybacki, Erik and Hoffmann, Ren{\´e}}, title = {The Evolution and Development of Cephalopod Chambers and Their Shape}, series = {PLOS ONE}, volume = {11}, journal = {PLOS ONE}, number = {3}, doi = {10.1371/journal.pone.0151404}, abstract = {The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth.}, language = {en} } @article{DunlopApanaskevichLehmannetal.2016, author = {Dunlop, Jason and Apanaskevich, Dmitry and Lehmann, Jens and Hoffmann, Rene and Fusseis, Florian and Ehlke, Moritz and Zachow, Stefan and Xiao, Xianghui}, title = {Microtomography of the Baltic amber tick Ixodes succineus reveals affinities with the modern Asian disease vector Ixodes ovatus}, series = {BMC Evolutionary Biology}, volume = {16}, journal = {BMC Evolutionary Biology}, number = {1}, doi = {10.1186/s12862-016-0777-y}, year = {2016}, abstract = {Background: Fossil ticks are extremely rare, whereby Ixodes succineus Weidner, 1964 from Eocene (ca. 44-49 Ma) Baltic amber is one of the oldest examples of a living hard tick genus (Ixodida: Ixodidae). Previous work suggested it was most closely related to the modern and widespread European sheep tick Ixodes ricinus (Linneaus, 1758). Results: Restudy using phase contrast synchrotron x-ray tomography yielded images of exceptional quality. These confirm the fossil's referral to Ixodes Latreille, 1795, but the characters resolved here suggest instead affinities with the Asian subgenus Partipalpiger Hoogstraal et al., 1973 and its single living (and medically significant) species Ixodes ovatus Neumann, 1899. We redescribe the amber fossil here as Ixodes (Partipalpiger) succineus. Conclusions: Our data suggest that Ixodes ricinus is unlikely to be directly derived from Weidner's amber species, but instead reveals that the Partipalpiger lineage was originally more widely distributed across the northern hemisphere. The closeness of Ixodes (P.) succineus to a living vector of a wide range of pathogens offers the potential to correlate its spatial and temporal position (northern Europe, nearly 50 million years ago) with the estimated origination dates of various tick-borne diseases.}, language = {en} } @article{BernardSalamancaThunbergetal., author = {Bernard, Florian and Salamanca, Luis and Thunberg, Johan and Tack, Alexander and Jentsch, Dennis and Lamecker, Hans and Zachow, Stefan and Hertel, Frank and Goncalves, Jorge and Gemmar, Peter}, title = {Shape-aware Surface Reconstruction from Sparse Data}, series = {arXiv}, journal = {arXiv}, pages = {1602.08425v1}, abstract = {The reconstruction of an object's shape or surface from a set of 3D points is a common topic in materials and life sciences, computationally handled in computer graphics. Such points usually stem from optical or tactile 3D coordinate measuring equipment. Surface reconstruction also appears in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or the alignment of intra-operative navigation and preoperative planning data. In contrast to mere 3D point clouds, medical imaging yields contextual information on the 3D point data that can be used to adopt prior information on the shape that is to be reconstructed from the measurements. In this work we propose to use a statistical shape model (SSM) as a prior for surface reconstruction. The prior knowledge is represented by a point distribution model (PDM) that is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we reformulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given measurements are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are oriented according to the surface normals at the PDM points, a surface-based tting is accomplished. By estimating the parameters of the GMM in a maximum a posteriori manner, the reconstruction of the surface from the given measurements is achieved. Extensive experiments suggest that our proposed approach leads to superior surface reconstructions compared to Iterative Closest Point (ICP) methods.}, language = {en} } @article{LemanisZachowHoffmann, author = {Lemanis, Robert and Zachow, Stefan and Hoffmann, Ren{\´e}}, title = {Comparative cephalopod shell strength and the role of septum morphology on stress distribution}, series = {PeerJ}, volume = {4}, journal = {PeerJ}, doi = {10.7717/peerj.2434}, pages = {e2434}, abstract = {The evolution of complexly folded septa in ammonoids has long been a controversial topic. Explanations of the function of these folded septa can be divided into physiological and mechanical hypotheses with the mechanical functions tending to find widespread support. The complexity of the cephalopod shell has made it difficult to directly test the mechanical properties of these structures without oversimplification of the septal morphology or extraction of a small sub-domain. However, the power of modern finite element analysis now permits direct testing of mechanical hypothesis on complete, empirical models of the shells taken from computed tomographic data. Here we compare, for the first time using empirical models, the capability of the shells of extant Nautilus pompilius, Spirula spirula, and the extinct ammonite Cadoceras sp. to withstand hydrostatic pressure and point loads. Results show hydrostatic pressure imparts highest stress on the final septum with the rest of the shell showing minimal compression. S. spirula shows the lowest stress under hydrostatic pressure while N. pompilius shows the highest stress. Cadoceras sp. shows the development of high stress along the attachment of the septal saddles with the shell wall. Stress due to point loads decreases when the point force is directed along the suture as opposed to the unsupported chamber wall. Cadoceras sp. shows the greatest decrease in stress between the point loads compared to all other models. Greater amplitude of septal flutes corresponds with greater stress due to hydrostatic pressure; however, greater amplitude decreases the stress magnitude of point loads directed along the suture. In our models, sutural complexity does not predict greater resistance to hydrostatic pressure but it does seem to increase resistance to point loads, such as would be from predators. This result permits discussion of palaeoecological reconstructions on the basis of septal morphology. We further suggest that the ratio used to characterize septal morphology in the septal strength index and in calculations of tensile strength of nacre are likely insufficient. A better understanding of the material properties of cephalopod nacre may allow the estimation of maximum depth limits of shelled cephalopods through finite element analysis.}, language = {en} } @article{BrueningGoubergritsHepptetal., author = {Br{\"u}ning, Jan and Goubergrits, Leonid and Heppt, Werner and Zachow, Stefan and Hildebrandt, Thomas}, title = {Numerical Analysis of Nasal Breathing - A Pilot Study}, series = {Facial Plastic Surgery}, volume = {33}, journal = {Facial Plastic Surgery}, number = {4}, doi = {doi:10.1055/s-0037-1603789}, pages = {388 -- 395}, abstract = {Background: Currently, there is no fully sufficient way to differentiate between symptomatic and normal nasal breathing. Using the nose's total resistance is disputed as a valid means to objectify nasal airflow, and the need for a more comprehensive diagnostic method is increasing. This work's aim was to test a novel approach considering intranasal wall shear stress as well as static pressure maps obtained by computational fluid dynamics (CFD). Methods: X-ray computed tomography (CT) scan data of six symptom-free subjects and seven symptomatic patients were used. Patient-specific geometries of the nasal cavity were segmented from these data sets. Inspiratory and expiratory steady airflow simulations were performed using CFD. Calculated static pressures and wall shear stresses (WSS) were mapped onto a common template of the nasal septum, allowing for comparison of these parameters between the two patient groups. Results: Significant differences in wall shear stress distributions during the inspiratory phase could be identified between the two groups, whereas no differences were found for the expiratory phase. It is assumed that one essential feature of normal nasal breathing probably consists in distinctively different intranasal flow fields for inspiration and expiration. This is in accordance with previous investigations. Conclusion: The proposed method seems to be a promising tool for developing a new kind of patient-specific assessment of nasal breathing. However, more studies and a greater case number of data with an expanded focus, would be ideal.}, language = {en} }