@inproceedings{GreweZachow, author = {Grewe, Carl Martin and Zachow, Stefan}, title = {Fully Automated and Highly Accurate Dense Correspondence for Facial Surfaces}, series = {Computer Vision - ECCV 2016 Workshops}, volume = {9914}, booktitle = {Computer Vision - ECCV 2016 Workshops}, publisher = {Springer International Publishing}, doi = {10.1007/978-3-319-48881-3_38}, pages = {552 -- 568}, abstract = {We present a novel framework for fully automated and highly accurate determination of facial landmarks and dense correspondence, e.g. a topologically identical mesh of arbitrary resolution, across the entire surface of 3D face models. For robustness and reliability of the proposed approach, we are combining 2D landmark detectors and 3D statistical shape priors with a variational matching method. Instead of matching faces in the spatial domain only, we employ image registration to align the 2D parametrization of the facial surface to a planar template we call the Unified Facial Parameter Domain (ufpd). This allows us to simultaneously match salient photometric and geometric facial features using robust image similarity measures while reasonably constraining geometric distortion in regions with less significant features. We demonstrate the accuracy of the dense correspondence established by our framework on the BU3DFE database with 2500 facial surfaces and show, that our framework outperforms current state-of-the-art methods with respect to the fully automated location of facial landmarks.}, language = {en} } @misc{EhlkeHeylandMaerdianetal., author = {Ehlke, Moritz and Heyland, Mark and M{\"a}rdian, Sven and Duda, Georg and Zachow, Stefan}, title = {Assessing the Relative Positioning of an Osteosynthesis Plate to the Patient-Specific Femoral Shape from Plain 2D Radiographs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-54268}, abstract = {We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient­specific surface of the distal femur based on 2D X­ray images. Our goal is to study from clinical data, how the plate­to­bone distance affects bone healing. The patient­specific 3D shape of the femur is, however, seldom recorded for cases of femoral osteosynthesis since this typically requires Computed Tomography (CT), which comes at high cost and radiation dose. Our method instead utilizes two postoperative X­ray images to derive the femoral shape and thus can be applied on radiographs that are taken in clinical routine for follow­up. First, the implant geometry is used as a calibration object to relate the implant and the individual X­ray images spatially in a virtual X­ray setup. In a second step, the patient­specific femoral shape and pose are reconstructed in the virtual setup by fitting a deformable statistical shape and intensity model (SSIM) to the images. The relative positioning between femur and implant is then assessed in terms of displacement between the reconstructed 3D shape of the femur and the plate. A preliminary evaluation based on 4 cadaver datasets shows that the method derives the plate­to­bone distance with a mean absolute error of less than 1mm and a maximum error of 4.7 mm compared to ground truth from CT. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing.}, language = {en} } @misc{GreweLeRouxPilzetal., author = {Grewe, Carl Martin and Le Roux, Gabriel and Pilz, Sven-Kristofer and Zachow, Stefan}, title = {Spotting the Details: The Various Facets of Facial Expressions}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-67696}, abstract = {3D Morphable Models (MM) are a popular tool for analysis and synthesis of facial expressions. They represent plausible variations in facial shape and appearance within a low-dimensional parameter space. Fitted to a face scan, the model's parameters compactly encode its expression patterns. This expression code can be used, for instance, as a feature in automatic facial expression recognition. For accurate classification, an MM that can adequately represent the various characteristic facets and variants of each expression is necessary. Currently available MMs are limited in the diversity of expression patterns. We present a novel high-quality Facial Expression Morphable Model built from a large-scale face database as a tool for expression analysis and synthesis. Establishment of accurate dense correspondence, up to finest skin features, enables a detailed statistical analysis of facial expressions. Various characteristic shape patterns are identified for each expression. The results of our analysis give rise to a new facial expression code. We demonstrate the advantages of such a code for the automatic recognition of expressions, and compare the accuracy of our classifier to state-of-the-art.}, language = {en} } @misc{EhlkeHeylandMaerdianetal., author = {Ehlke, Moritz and Heyland, Mark and M{\"a}rdian, Sven and Duda, Georg and Zachow, Stefan}, title = {3D Assessment of Osteosynthesis based on 2D Radiographs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56217}, abstract = {We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient-specific surface of the distal femur based on postoperative 2D radiographs. In a first step, the implant geometry is used as a calibration object to relate the implant and the individual X-ray images spatially in a virtual X-ray setup. Second, the patient-specific femoral shape and pose are reconstructed by fitting a deformable statistical shape and intensity model (SSIM) to the X-rays. The relative positioning between femur and implant is then assessed in terms of the displacement between the reconstructed 3D shape of the femur and the plate. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing and, ultimately, to derive load recommendations after surgery.}, language = {en} }