@misc{JoachimskyAmbellanZachow2017, author = {Joachimsky, Robert and Ambellan, Felix and Zachow, Stefan}, title = {Computerassistierte Auswahl und Platzierung von interpositionalen Spacern zur Behandlung fr{\"u}her Gonarthrose}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66064}, year = {2017}, abstract = {Degenerative Gelenkerkrankungen, wie die Osteoarthrose, sind ein h{\"a}ufiges Krankheitsbild unter {\"a}lteren Erwachsenen. Hierbei verringert sich u.a. der Gelenkspalt aufgrund degenerierten Knorpels oder gesch{\"a}digter Menisci. Ein in den Gelenkspalt eingebrachter interpositionaler Spacer soll die mit der Osteoarthrose einhergehende verringerte Gelenkkontaktfl{\"a}che erh{\"o}hen und so der teilweise oder vollst{\"a}ndige Gelenkersatz hinausgez{\"o}gert oder vermieden werden. In dieser Arbeit pr{\"a}sentieren wir eine Planungssoftware f{\"u}r die Auswahl und Positionierung eines interpositionalen Spacers am Patientenmodell. Auf einer MRT-basierten Bildsegmentierung aufbauend erfolgt eine geometrische Rekonstruktion der 3D-Anatomie des Kniegelenks. Anhand dieser wird der Gelenkspalt bestimmt, sowie ein Spacer ausgew{\"a}hlt und algorithmisch vorpositioniert. Die Positionierung des Spacers ist durch den Benutzer jederzeit interaktiv anpassbar. F{\"u}r jede Positionierung eines Spacers wird ein Fitness-Wert zur Knieanatomie des jeweiligen Patienten berechnet und den Nutzern R{\"u}ckmeldung hinsichtlich Passgenauigkeit gegeben. Die Software unterst{\"u}tzt somit als Entscheidungshilfe die behandelnden {\"A}rzte bei der patientenspezifischen Spacerauswahl.}, language = {de} } @misc{HegeMerzkyZachow2000, author = {Hege, Hans-Christian and Merzky, Andre and Zachow, Stefan}, title = {Distributed Visualization with OpenGL Vizserver: Practical Experiences}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5992}, number = {00-31}, year = {2000}, abstract = {The increasing demand for distributed solutions in computing technology does not stop when it comes to visualization techniques. However, the capabilities of todays applications to perform remote rendering are limited by historical design legacys. Especially the popular X11 protokoll, which has been proven to be extremely flexible and usefull for remote 2D graphics applications, breaks down for the case of remote 3D rendering. In this white paper, we give a short overview of generic remote rendering technologies available today, and compare their performance to the recently released vizserver by SGI: a network extension to the SGI OpenGL rendering engines.}, language = {en} } @misc{KoberSaderZeilhoferetal.2001, author = {Kober, Cornelia and Sader, Robert and Zeilhofer, Hans-Florian and Prohaska, Steffen and Zachow, Stefan and Deuflhard, Peter}, title = {Anisotrope Materialmodellierung f{\"u}r den menschlichen Unterkiefer}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6574}, number = {01-31}, year = {2001}, abstract = {Im Rahmen der biomechanischen Simulation kn{\"o}cherner Organe ist die Frage nach einer befriedigenden Materialbeschreibung nach wie vor ungel{\"o}st. Computertomographische Datens{\"a}tze liefern eine r{\"a}umliche Verteilung der (R{\"o}ntgen-)Dichte und erm{\"o}glichen damit eine gute Darstellung der individuellen Geometrie. Weiter k{\"o}nnen die verschiedenen Materialbestandteile des Knochens, Spongiosa und Kortikalis, voneinander getrennt werden. Aber die richtungsab{\"a}ngige Information der Materialanisotropie ist verloren. In dieser Arbeit wird ein Ansatz f{\"u}r eine anisotrope Materialbeschreibung vorgestellt, die es erm{\"o}glicht, den Einfluss der individuellen kn{\"o}chernen Struktur auf das makroskopische Materialverhalten abzusch{\"a}tzen.}, language = {de} } @phdthesis{Zachow2005, author = {Zachow, Stefan}, title = {Computergest{\"u}tzte 3D Osteotomieplanung in der Mund-Kiefer-Gesichtschirurgie unter Ber{\"u}cksichtigung der r{\"a}umlichen Weichgewebeanordnung}, isbn = {3899631986}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10432}, year = {2005}, abstract = {In der Arbeit wird die computergest{\"u}tzte Planung von chirurgisch gesetzten Knochenfrakturen bzw. Knochenschnitten (sogenannten Osteotomien) an dreidimensionalen, computergrafischen Sch{\"a}delmodellen, sowie die Umpositionierung separierter kn{\"o}cherner Segmente im Kontext der rekonstruktiven MKG-Chirurgie behandelt. Durch die 3D Modellierung und Visualisierung anatomischer Strukturen, sowie der 3D Osteotomie- und Umstellungsplanung unter Einbeziehung der resultierenden Weichgewebedeformation wird den Chirurgen ein Werkzeug an die Hand gegeben, mit dem eine Therapieplanung am Computer durchgef{\"u}hrt und diese in Hinblick auf Funktion und {\"A}sthetik bewertet werden kann. Unterschiedliche Strategien k{\"o}nnen dabei erprobt und in ihrer Auswirkung erfasst werden. Dazu wird ein methodischer Ansatz vorgestellt, der zum einen die chirurgische Planung im Vergleich zu existierenden Ans{\"a}tzen deutlich verbessert und zum anderen eine robuste Weichgewebeprognose, durch den Einsatz geeigneter Planungsmodelle und eines physikalisch basierten Weichgewebemodells unter Nutzung numerischer L{\"o}sungsverfahren in die Planung integriert. Die Visualisierung der Planungsergebnisse erlaubt sowohl eine anschauliche und {\"u}berzeugende, pr{\"a}operative Patientenaufkl{\"a}rung, als auch die Demonstration m{\"o}glicher Vorgehensweisen und deren Auswirkungen f{\"u}r die chirurgische Ausbildung. Ferner erg{\"a}nzen die Planungsdaten die Falldokumentation und liefern einen Beitrag zur Qualit{\"a}tssicherung. Die Arbeit ist in sieben Kapitel gegliedert und wie folgt strukturiert: Zuerst wird die medizinische Aufgabenstellung bei der chirurgischen Rekonstruktion von Knochenfehlbildungen und -fehlstellungen in der kraniofazialen Chirurgie sowie die daraus resultierenden Anforderungen an die Therapieplanung beschrieben. Anschließend folgt ein umfassender {\"U}berblick {\"u}ber entsprechende Vorarbeiten zur computergest{\"u}tzten Planung knochenverlagernder Operationen und eine kritische Bestandsaufnahme der noch vorhandenen Defizite. Nach der Vorstellung des eigenen Planungsansatzes wird die Generierung individueller, qualitativ hochwertiger 3D Planungsmodelle aus tomografischen Bilddaten beschrieben, die den Anforderungen an eine intuitive, 3D Planung von Umstellungsosteotomien entsprechen und eine Simulation der daraus resultierenden Weichgewebedeformation mittels der Finite-Elemente Methode (FEM) erm{\"o}glichen. Die Methoden der 3D Schnittplanung an computergrafischen Modellen werden analysiert und eine 3D Osteotomieplanung an polygonalen Sch{\"a}delmodellen entwickelt, die es erm{\"o}glicht, intuitiv durch Definition von Schnittlinien am 3D Knochenmodell, eine den chirurgischen Anforderungen entsprechende Schnittplanung unter Ber{\"u}cksichtigung von Risikostrukturen durchzuf{\"u}hren. Separierte Knochensegmente lassen sich im Anschluss interaktiv umpositionieren und die resultierende Gesamtanordnung hinsichtlich einer funktionellen Rehabilitation bewerten. Aufgrund des in dieser Arbeit gew{\"a}hlten, physikalisch basierten Modellierungsansatzes kann unter Ber{\"u}cksichtigung des gesamten Weichgewebevolumens aus der Knochenverlagerung direkt die resultierende Gesichtsform berechnet werden. Dies wird anhand von 13 exemplarischen Fallstudien anschaulich demonstriert, wobei die Prognosequalit{\"a}t mittels postoperativer Fotografien und postoperativer CT-Daten {\"u}berpr{\"u}ft und belegt wird. Die Arbeit wird mit einem Ausblick auf erweiterte Modellierungsans{\"a}tze und einem Konzept f{\"u}r eine integrierte, klinisch einsetzbare Planungsumgebung abgeschlossen.}, language = {de} } @misc{ZachowZilskeHege2007, author = {Zachow, Stefan and Zilske, Michael and Hege, Hans-Christian}, title = {3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10440}, number = {07-41}, year = {2007}, abstract = {For medical diagnosis, visualization, and model-based therapy planning three-dimensional geometric reconstructions of individual anatomical structures are often indispensable. Computer-assisted, model-based planning procedures typically cover specific modifications of "virtual anatomy" as well as numeric simulations of associated phenomena, like e.g. mechanical loads, fluid dynamics, or diffusion processes, in order to evaluate a potential therapeutic outcome. Since internal anatomical structures cannot be measured optically or mechanically in vivo, three-dimensional reconstruction of tomographic image data remains the method of choice. In this work the process chain of individual anatomy reconstruction is described which consists of segmentation of medical image data, geometrical reconstruction of all relevant tissue interfaces, up to the generation of geometric approximations (boundary surfaces and volumetric meshes) of three-dimensional anatomy being suited for finite element analysis. All results presented herein are generated with amira ® - a highly interactive software system for 3D data analysis, visualization and geometry reconstruction.}, language = {en} } @misc{GreweZachow2021, author = {Grewe, C. Martin and Zachow, Stefan}, title = {Release of the FexMM for the Open Virtual Mirror Framework}, doi = {10.12752/8532}, year = {2021}, abstract = {THIS MODEL IS FOR NON-COMMERCIAL RESEARCH PURPOSES. ONLY MEMBERS OF UNIVERSITIES OR NON-COMMERCIAL RESEARCH INSTITUTES ARE ELIGIBLE TO APPLY. 1. Download, fill, and sign the form available from: https://media.githubusercontent.com/media/mgrewe/ovmf/main/data/fexmm_license_agreement.pdf 2. Send the signed form to: fexmm@zib.de NOTE: Use an official email address of your institution for the request.}, language = {en} } @article{LiPimentelSzengeletal.2021, author = {Li, Jianning and Pimentel, Pedro and Szengel, Angelika and Ehlke, Moritz and Lamecker, Hans and Zachow, Stefan and Estacio, Laura and Doenitz, Christian and Ramm, Heiko and Shi, Haochen and Chen, Xiaojun and Matzkin, Franco and Newcombe, Virginia and Ferrante, Enzo and Jin, Yuan and Ellis, David G. and Aizenberg, Michele R. and Kodym, Oldrich and Spanel, Michal and Herout, Adam and Mainprize, James G. and Fishman, Zachary and Hardisty, Michael R. and Bayat, Amirhossein and Shit, Suprosanna and Wang, Bomin and Liu, Zhi and Eder, Matthias and Pepe, Antonio and Gsaxner, Christina and Alves, Victor and Zefferer, Ulrike and von Campe, Cord and Pistracher, Karin and Sch{\"a}fer, Ute and Schmalstieg, Dieter and Menze, Bjoern H. and Glocker, Ben and Egger, Jan}, title = {AutoImplant 2020 - First MICCAI Challenge on Automatic Cranial Implant Design}, volume = {40}, journal = {IEEE Transactions on Medical Imaging}, number = {9}, issn = {0278-0062}, doi = {10.1109/TMI.2021.3077047}, pages = {2329 -- 2342}, year = {2021}, abstract = {The aim of this paper is to provide a comprehensive overview of the MICCAI 2020 AutoImplant Challenge. The approaches and publications submitted and accepted within the challenge will be summarized and reported, highlighting common algorithmic trends and algorithmic diversity. Furthermore, the evaluation results will be presented, compared and discussed in regard to the challenge aim: seeking for low cost, fast and fully automated solutions for cranial implant design. Based on feedback from collaborating neurosurgeons, this paper concludes by stating open issues and post-challenge requirements for intra-operative use.}, language = {en} } @article{TackAmbellanZachow2021, author = {Tack, Alexander and Ambellan, Felix and Zachow, Stefan}, title = {Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative}, volume = {16}, journal = {PLOS One}, number = {10}, doi = {10.1371/journal.pone.0258855}, year = {2021}, abstract = {Convolutional neural networks (CNNs) are the state-of-the-art for automated assessment of knee osteoarthritis (KOA) from medical image data. However, these methods lack interpretability, mainly focus on image texture, and cannot completely grasp the analyzed anatomies' shapes. In this study we assess the informative value of quantitative features derived from segmentations in order to assess their potential as an alternative or extension to CNN-based approaches regarding multiple aspects of KOA. Six anatomical structures around the knee (femoral and tibial bones, femoral and tibial cartilages, and both menisci) are segmented in 46,996 MRI scans. Based on these segmentations, quantitative features are computed, i.e., measurements such as cartilage volume, meniscal extrusion and tibial coverage, as well as geometric features based on a statistical shape encoding of the anatomies. The feature quality is assessed by investigating their association to the Kellgren-Lawrence grade (KLG), joint space narrowing (JSN), incident KOA, and total knee replacement (TKR). Using gold standard labels from the Osteoarthritis Initiative database the balanced accuracy (BA), the area under the Receiver Operating Characteristic curve (AUC), and weighted kappa statistics are evaluated. Features based on shape encodings of femur, tibia, and menisci plus the performed measurements showed most potential as KOA biomarkers. Differentiation between non-arthritic and severely arthritic knees yielded BAs of up to 99\%, 84\% were achieved for diagnosis of early KOA. Weighted kappa values of 0.73, 0.72, and 0.78 were achieved for classification of the grade of medial JSN, lateral JSN, and KLG, respectively. The AUC was 0.61 and 0.76 for prediction of incident KOA and TKR within one year, respectively. Quantitative features from automated segmentations provide novel biomarkers for KLG and JSN classification and show potential for incident KOA and TKR prediction. The validity of these features should be further evaluated, especially as extensions of CNN- based approaches. To foster such developments we make all segmentations publicly available together with this publication.}, language = {en} } @article{TackShestakovLuedkeetal.2021, author = {Tack, Alexander and Shestakov, Alexey and L{\"u}dke, David and Zachow, Stefan}, title = {A deep multi-task learning method for detection of meniscal tears in MRI data from the Osteoarthritis Initiative database}, journal = {Frontiers in Bioengineering and Biotechnology, section Biomechanics}, doi = {10.3389/fbioe.2021.747217}, pages = {28 -- 41}, year = {2021}, abstract = {We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences.}, language = {en} } @misc{TackShestakovLuedkeetal.2021, author = {Tack, Alexander and Shestakov, Alexey and L{\"u}dke, David and Zachow, Stefan}, title = {A deep multi-task learning method for detection of meniscal tears in MRI data from the Osteoarthritis Initiative database}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-84415}, year = {2021}, abstract = {We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences.}, language = {en} }