@article{KainmuellerLameckerZachow2009, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Zachow, Stefan}, title = {Multi-object Segmentation with Coupled Deformable Models}, series = {Annals of the British Machine Vision Association (BMVA)}, volume = {5}, journal = {Annals of the British Machine Vision Association (BMVA)}, pages = {1 -- 10}, year = {2009}, language = {en} } @article{ZachowMuiggHildebrandtetal.2009, author = {Zachow, Stefan and Muigg, Philipp and Hildebrandt, Thomas and Doleisch, Helmut and Hege, Hans-Christian}, title = {Visual Exploration of Nasal Airflow}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {8}, doi = {10.1109/TVCG.2009.198}, pages = {1407 -- 1414}, year = {2009}, language = {en} } @article{ZachowDeuflhard2008, author = {Zachow, Stefan and Deuflhard, Peter}, title = {Computergest{\"u}tzte Planung in der kraniofazialen Chirurgie}, series = {Face 01/08, Int. Mag. of Orofacial Esthetics}, journal = {Face 01/08, Int. Mag. of Orofacial Esthetics}, publisher = {Oemus Journale Leipzig}, pages = {43 -- 49}, year = {2008}, language = {en} } @inproceedings{ZilskeLameckerZachow2008, author = {Zilske, Michael and Lamecker, Hans and Zachow, Stefan}, title = {Adaptive Remeshing of Non-Manifold Surfaces}, series = {Eurographics 2008 Annex to the Conf. Proc.}, booktitle = {Eurographics 2008 Annex to the Conf. Proc.}, pages = {207 -- 211}, year = {2008}, language = {en} } @inproceedings{SeimLameckerZachow2008, author = {Seim, Heiko and Lamecker, Hans and Zachow, Stefan}, title = {Segmentation of Bony Structures with Ligament Attachment Sites}, series = {Bildverarbeitung f{\"u}r die Medizin 2008}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2008}, publisher = {Springer}, doi = {10.1007/978-3-540-78640-5_42}, pages = {207 -- 211}, year = {2008}, language = {en} } @inproceedings{NeugebauerJanigaZachowetal.2008, author = {Neugebauer, Mathias and Janiga, Gabor and Zachow, Stefan and Krischek, {\"O}zlem and Preim, Bernhard}, title = {Generierung qualitativ hochwertiger Modelle f{\"u}r die Simulation von Blutfluss in zerebralen Aneurysmen}, series = {Proc. of Simulation and Visualization 2008}, booktitle = {Proc. of Simulation and Visualization 2008}, editor = {Hauser, Helwig}, pages = {221 -- 235}, year = {2008}, language = {en} } @inproceedings{DornheimBornZachowetal.2008, author = {Dornheim, Jana and Born, Silvia and Zachow, Stefan and Gessat, Michael and Wellein, Daniela and Strauß, Gero and Preim, Bernhard and Bartz, Dirk}, title = {Bildanalyse, Visualisierung und Modellerstellung f{\"u}r die Implantatplanung im Mittelohr}, series = {Proc. of Simulation and Visualization 2008}, booktitle = {Proc. of Simulation and Visualization 2008}, editor = {Hauser, Helwig}, pages = {139 -- 154}, year = {2008}, language = {en} } @article{SteinmannBartschZachowetal.2008, author = {Steinmann, Alexander and Bartsch, Peter and Zachow, Stefan and Hildebrandt, Thomas}, title = {Breathing Easily: Simulation of airflow in human noses can become a useful rhinosurgery planning tool}, series = {ANSYS Advantage}, volume = {Vol. II, No. 1}, journal = {ANSYS Advantage}, pages = {30 -- 31}, year = {2008}, language = {en} } @article{WeiserZachowDeuflhard2010, author = {Weiser, Martin and Zachow, Stefan and Deuflhard, Peter}, title = {Craniofacial Surgery Planning Based on Virtual Patient Models}, series = {it - Information Technology}, volume = {52}, journal = {it - Information Technology}, number = {5}, publisher = {Oldenbourg Verlagsgruppe}, doi = {10.1524/itit.2010.0600}, pages = {258 -- 263}, year = {2010}, language = {en} } @incollection{ZachowHahnLange2010, author = {Zachow, Stefan and Hahn, Horst and Lange, Thomas}, title = {Computerassistierte Chirugieplanung}, series = {Computerassistierte Chirurgie}, booktitle = {Computerassistierte Chirurgie}, editor = {Schlag, Peter and Eulenstein, Sebastian and Lange, Thomas}, publisher = {Elsevier}, pages = {119 -- 149}, year = {2010}, language = {en} } @inproceedings{KainmuellerLameckerSeimetal.2010, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Seim, Heiko and Zachow, Stefan and Hege, Hans-Christian}, title = {Improving Deformable Surface Meshes through Omni-directional Displacements and MRFs}, series = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI)}, volume = {6361}, booktitle = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI)}, editor = {Navab, Tianzi and P. W. Pluim, Josien and Viergever, Max}, publisher = {Springer}, doi = {10.1007/978-3-642-15705-9_28}, pages = {227 -- 234}, year = {2010}, language = {en} } @inproceedings{ZachowKubiackMalinowskietal.2010, author = {Zachow, Stefan and Kubiack, Kim and Malinowski, Jana and Lamecker, Hans and Essig, Harald and Gellrich, Nils-Claudius}, title = {Modellgest{\"u}tzte chirurgische Rekonstruktion komplexer Mittelgesichtsfrakturen}, series = {Proc. BMT, Biomed Tech 2010}, volume = {55 (Suppl 1)}, booktitle = {Proc. BMT, Biomed Tech 2010}, publisher = {Walter de Gruyter-Verlag}, pages = {107 -- 108}, year = {2010}, language = {de} } @inproceedings{LameckerKainmuellerSeimetal.2010, author = {Lamecker, Hans and Kainm{\"u}ller, Dagmar and Seim, Heiko and Zachow, Stefan}, title = {Automatische 3D Rekonstruktion des Unterkiefers und der Mandibul{\"a}rnerven auf Basis dentaler Bildgebung}, series = {Proc. BMT, Biomed Tech}, volume = {55 (Suppl. 1)}, booktitle = {Proc. BMT, Biomed Tech}, publisher = {Walter de Gruyter-Verlag}, pages = {35 -- 36}, year = {2010}, language = {en} } @article{DworzakLameckervonBergetal.2010, author = {Dworzak, Jalda and Lamecker, Hans and von Berg, Jens and Klinder, Tobias and Lorenz, Cristian and Kainm{\"u}ller, Dagmar and Seim, Heiko and Hege, Hans-Christian and Zachow, Stefan}, title = {3D Reconstruction of the Human Rib Cage from 2D Projection Images using a Statistical Shape Model}, series = {Int. J. Comput. Assist. Radiol. Surg.}, volume = {5}, journal = {Int. J. Comput. Assist. Radiol. Surg.}, number = {2}, publisher = {Springer}, issn = {1861-6410}, doi = {10.1007/s11548-009-0390-2}, pages = {111 -- 124}, year = {2010}, language = {en} } @misc{KamerNoserLameckeretal.2006, author = {Kamer, Lukas and Noser, Hansrudi and Lamecker, Hans and Zachow, Stefan and Wittmers, Antonia and Kaup, Thomas and Schramm, Alexander and Hammer, Beat}, title = {Three-dimensional statistical shape analysis - A useful tool for developing a new type of orbital implant?}, publisher = {AO Development Institute, New Products Brochure 2/06}, pages = {20 -- 21}, year = {2006}, language = {en} } @article{HepptHildebrandtSteinmannetal.2007, author = {Heppt, Werner and Hildebrandt, Thomas and Steinmann, Alexander and Zachow, Stefan}, title = {Aesthetic and Function in Rhinoplasty}, series = {Springer Journal}, volume = {264 (Suppl 1), RL 126}, journal = {Springer Journal}, pages = {307}, year = {2007}, language = {en} } @inproceedings{ZachowZilskeHege2007, author = {Zachow, Stefan and Zilske, Michael and Hege, Hans-Christian}, title = {3D Reconstruction of Individual Anatomy from Medical Image Data: Segmentation and Geometry Processing}, series = {25. ANSYS Conference \& CADFEM Users' Meeting}, booktitle = {25. ANSYS Conference \& CADFEM Users' Meeting}, address = {Dresden}, year = {2007}, language = {en} } @article{GessatZachowBurgertetal.2007, author = {Gessat, Michael and Zachow, Stefan and Burgert, Oliver and Lemke, Heinz}, title = {Geometric Meshes in Medical Applications - Steps towards a specification of Geometric Models in DICOM}, series = {Int. J. of Computer Assisted Radiology and Surgery (CARS)}, journal = {Int. J. of Computer Assisted Radiology and Surgery (CARS)}, doi = {10.1007/s11548-007-0112-6}, pages = {440 -- 442}, year = {2007}, language = {en} } @article{HildebrandtZachowSteinmannetal.2007, author = {Hildebrandt, Thomas and Zachow, Stefan and Steinmann, Alexander and Heppt, Werner}, title = {Innovation in der Funktionell-{\"A}sthetischen Nasenchirurgie: Rhino-CFD}, series = {Face, Int. Mag. of Orofacial Esthetics}, journal = {Face, Int. Mag. of Orofacial Esthetics}, publisher = {Oemus Journale Leipzig}, pages = {20 -- 23}, year = {2007}, language = {en} } @article{ZachowSteinmannHildebrandtetal.2007, author = {Zachow, Stefan and Steinmann, Alexander and Hildebrandt, Thomas and Heppt, Werner}, title = {Understanding nasal airflow via CFD simulation and visualization}, series = {Proc. Computer Aided Surgery around the Head}, journal = {Proc. Computer Aided Surgery around the Head}, pages = {173 -- 176}, year = {2007}, language = {en} } @article{LameckerKamerWittmersetal.2007, author = {Lamecker, Hans and Kamer, Lukas and Wittmers, Antonia and Zachow, Stefan and Kaup, Thomas and Schramm, Alexander and Noser, Hansrudi and Hammer, Beat}, title = {A method for the three-dimensional statistical shape analysis of the bony orbit}, series = {Proc. Computer Aided Surgery around the Head}, journal = {Proc. Computer Aided Surgery around the Head}, pages = {94 -- 97}, year = {2007}, language = {en} } @inproceedings{ZachowLameckerElsholtzetal.2005, author = {Zachow, Stefan and Lamecker, Hans and Elsholtz, Barbara and Stiller, Michael}, title = {Reconstruction of mandibular dysplasia using a statistical 3D shape model}, series = {Proc. Computer Assisted Radiology and Surgery (CARS)}, booktitle = {Proc. Computer Assisted Radiology and Surgery (CARS)}, address = {Berlin, Germany}, doi = {10.1016/j.ics.2005.03.339}, pages = {1238 -- 1243}, year = {2005}, language = {en} } @inproceedings{NkenkeHaeuslerNeukametal.2005, author = {Nkenke, Emeka and H{\"a}usler, Gerd and Neukam, Friedrich and Zachow, Stefan}, title = {Streak artifact correction of CT data by optical 3D imaging in the simulation of orthognathic surgery}, series = {Computer Assisted Radiology and Surgery (CARS)}, booktitle = {Computer Assisted Radiology and Surgery (CARS)}, address = {Berlin Germany}, doi = {doi:10.1016/j.ics.2005.03.278}, year = {2005}, language = {en} } @inproceedings{NkenkeZachowHaeusler2005, author = {Nkenke, Emeka and Zachow, Stefan and H{\"a}usler, Gerd}, title = {Fusion von optischen 3D- und CT-Daten des Gebisses zur Metallartefaktkorrektur vor computerassistierter Planung MKG-chirurgischer Eingriffe}, series = {Symposium der Arbeitsgemeinschaf f{\"u}r Kieferchirurgie}, booktitle = {Symposium der Arbeitsgemeinschaf f{\"u}r Kieferchirurgie}, address = {Bad Homburg v.d.H}, year = {2005}, language = {en} } @article{LameckerZachowHaberletal.2005, author = {Lamecker, Hans and Zachow, Stefan and Haberl, Hannes and Stiller, Michael}, title = {Medical applications for statistical shape models}, series = {Computer Aided Surgery around the Head, Fortschritt-Berichte VDI - Biotechnik/Medizintechnik}, volume = {17 (258)}, journal = {Computer Aided Surgery around the Head, Fortschritt-Berichte VDI - Biotechnik/Medizintechnik}, pages = {61}, year = {2005}, language = {en} } @article{LameckerZachowWittmersetal.2006, author = {Lamecker, Hans and Zachow, Stefan and Wittmers, Antonia and Weber, Britta and Hege, Hans-Christian and Elsholtz, Barbara and Stiller, Michael}, title = {Automatic segmentation of mandibles in low-dose CT-data}, series = {Int. J. Computer Assisted Radiology and Surgery}, volume = {1(1)}, journal = {Int. J. Computer Assisted Radiology and Surgery}, pages = {393 -- 395}, year = {2006}, language = {en} } @article{LameckerZachowHegeetal.2006, author = {Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian and Z{\"o}ckler, Maja}, title = {Surgical treatment of craniosynostosis based on a statistical 3D-shape model}, series = {Int. J. Computer Assisted Radiology and Surgery}, volume = {1(1)}, journal = {Int. J. Computer Assisted Radiology and Surgery}, doi = {10.1007/s11548-006-0024-x}, pages = {253 -- 254}, year = {2006}, language = {en} } @article{ZachowHegeDeuflhard2006, author = {Zachow, Stefan and Hege, Hans-Christian and Deuflhard, Peter}, title = {Computer assisted planning in cranio-maxillofacial surgery}, series = {Journal of Computing and Information Technology}, volume = {14(1)}, journal = {Journal of Computing and Information Technology}, pages = {53 -- 64}, year = {2006}, language = {en} } @article{ZachowLameckerElsholtzetal.2006, author = {Zachow, Stefan and Lamecker, Hans and Elsholtz, Barbara and Stiller, Michael}, title = {Is the course of the mandibular nerve deducible from the shape of the mandible?}, series = {Int. J. of Computer Assisted Radiology and Surgery}, journal = {Int. J. of Computer Assisted Radiology and Surgery}, publisher = {Springer}, pages = {415 -- 417}, year = {2006}, language = {en} } @article{ZachowSteinmannHildebrandtetal.2006, author = {Zachow, Stefan and Steinmann, Alexander and Hildebrandt, Thomas and Weber, Rainer and Heppt, Werner}, title = {CFD simulation of nasal airflow: Towards treatment planning for functional rhinosurgery}, series = {Int. J. of Computer Assisted Radiology and Surgery}, journal = {Int. J. of Computer Assisted Radiology and Surgery}, publisher = {Springer}, pages = {165 -- 167}, year = {2006}, language = {en} } @inproceedings{EhlkeFrenzelRammetal., author = {Ehlke, Moritz and Frenzel, Thomas and Ramm, Heiko and Shandiz, Mohsen Akbari and Anglin, Carolyn and Zachow, Stefan}, title = {Towards Robust Measurement Of Pelvic Parameters From AP Radiographs Using Articulated 3D Models}, series = {Computer Assisted Radiology and Surgery (CARS)}, booktitle = {Computer Assisted Radiology and Surgery (CARS)}, abstract = {Patient-specific parameters such as the orientation of the acetabulum or pelvic tilt are useful for custom planning for total hip arthroplasty (THA) and for evaluating the outcome of surgical interventions. The gold standard in obtaining pelvic parameters is from three-dimensional (3D) computed tomography (CT) imaging. However, this adds time and cost, exposes the patient to a substantial radiation dose, and does not allow for imaging under load (e.g. while the patient is standing). If pelvic parameters could be reliably derived from the standard anteroposterior (AP) radiograph, preoperative planning would be more widespread, and research analyses could be applied to retrospective data, after a postoperative issue is discovered. The goal of this work is to enable robust measurement of two surgical parameters of interest: the tilt of the anterior pelvic plane (APP) and the orientation of the natural acetabulum. We present a computer-aided reconstruction method to determine the APP and natural acetabular orientation from a single, preoperative X-ray. It can easily be extended to obtain other important preoperative and postoperative parameters solely based on a single AP radiograph.}, language = {en} } @misc{EhlkeFrenzelRammetal., author = {Ehlke, Moritz and Frenzel, Thomas and Ramm, Heiko and Shandiz, Mohsen Akbari and Anglin, Carolyn and Zachow, Stefan}, title = {Towards Robust Measurement of Pelvic Parameters from AP Radiographs using Articulated 3D Models}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53707}, abstract = {Patient-specific parameters such as the orientation of the acetabulum or pelvic tilt are useful for custom planning for total hip arthroplasty (THA) and for evaluating the outcome of surgical interventions. The gold standard in obtaining pelvic parameters is from three-dimensional (3D) computed tomography (CT) imaging. However, this adds time and cost, exposes the patient to a substantial radiation dose, and does not allow for imaging under load (e.g. while the patient is standing). If pelvic parameters could be reliably derived from the standard anteroposterior (AP) radiograph, preoperative planning would be more widespread, and research analyses could be applied to retrospective data, after a postoperative issue is discovered. The goal of this work is to enable robust measurement of two surgical parameters of interest: the tilt of the anterior pelvic plane (APP) and the orientation of the natural acetabulum. We present a computer-aided reconstruction method to determine the APP and natural acetabular orientation from a single, preoperative X-ray. It can easily be extended to obtain other important preoperative and postoperative parameters solely based on a single AP radiograph.}, language = {en} } @article{LemanisZachowFusseisetal., author = {Lemanis, Robert and Zachow, Stefan and Fusseis, Florian and Hoffmann, Ren{\´e}}, title = {A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells}, series = {Paleobiology}, volume = {41}, journal = {Paleobiology}, number = {2}, publisher = {Cambridge University Press}, address = {Cambridge}, doi = {10.1017/pab.2014.17}, pages = {313 -- 329}, abstract = {The chambered shell of modern cephalopods functions as a buoyancy apparatus, allowing the animal to enter the water column without expending a large amount of energy to overcome its own weight. Indeed, the chambered shell is largely considered a key adaptation that allowed the earliest cephalopods to leave the ocean floor and enter the water column. It has been argued by some, however, that the iconic chambered shell of Paleozoic and Mesozoic ammonoids did not provide a sufficiently buoyant force to compensate for the weight of the entire animal, thus restricting ammonoids to a largely benthic lifestyle reminiscent of some octopods. Here we develop a technique using high-resolution computed tomography to quantify the buoyant properties of chambered shells without reducing the shell to ideal spirals or eliminating inherent biological variability by using mathematical models that characterize past work in this area. This technique has been tested on Nautilus pompilius and is now extended to the extant deep-sea squid Spirula spirula and the Jurassic ammonite Cadoceras sp. hatchling. Cadoceras is found to have possessed near-neutral to positive buoyancy if hatched when the shell possessed between three and five chambers. However, we show that the animal could also overcome degrees of negative buoyancy through swimming, similar to the paralarvae of modern squids. These calculations challenge past inferences of benthic life habits based solely on calculations of negative buoyancy. The calculated buoyancy of Cadoceras supports the possibility of planktonic dispersal of ammonite hatchlings. This information is essential to understanding ammonoid ecology as well as biotic interactions and has implications for the interpretation of geochemical data gained from the isotopic analysis of the shell.}, language = {en} } @inproceedings{TackZachow, author = {Tack, Alexander and Zachow, Stefan}, title = {Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, series = {IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)}, booktitle = {IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)}, doi = {10.1109/ISBI.2019.8759201}, pages = {40 -- 43}, abstract = {Volumetry of cartilage of the knee is needed for knee osteoarthritis (KOA) assessment. It is typically performed manually in a tedious and subjective process. We developed a method for an automated, segmentation-based quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data and cartilage volumetry readings performed by clinical experts for 1378 subjects provided by the Osteoarthritis Initiative. It was shown that 3D CNNs are able to achieve volume measures comparable to the magnitude of variation between expert readings and the real in vivo situation. In the future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as longitudinal analysis of KOA progression.}, language = {en} } @inproceedings{NeumannHellwichZachow, author = {Neumann, Mario and Hellwich, Olaf and Zachow, Stefan}, title = {Localization and Classification of Teeth in Cone Beam CT using Convolutional Neural Networks}, series = {Proc. of the 18th annual conference on Computer- and Robot-assisted Surgery (CURAC)}, booktitle = {Proc. of the 18th annual conference on Computer- and Robot-assisted Surgery (CURAC)}, isbn = {978-3-00-063717-9}, pages = {182 -- 188}, abstract = {In dentistry, software-based medical image analysis and visualization provide efficient and accurate diagnostic and therapy planning capabilities. We present an approach for the automatic recognition of tooth types and positions in digital volume tomography (DVT). By using deep learning techniques in combination with dimensionality reduction through non-planar reformatting of the jaw anatomy, DVT data can be efficiently processed and teeth reliably recognized and classified, even in the presence of imaging artefacts, missing or dislocated teeth. We evaluated our approach, which is based on 2D Convolutional Neural Networks (CNNs), on 118 manually annotated cases of clinical DVT datasets. Our proposed method correctly classifies teeth with an accuracy of 94\% within a limit of 2mm distance to ground truth labels.}, language = {en} } @inproceedings{JoachimskyMaIckingetal., author = {Joachimsky, Robert and Ma, Lihong and Icking, Christian and Zachow, Stefan}, title = {A Collision-Aware Articulated Statistical Shape Model of the Human Spine}, series = {Proc. of the 18th annual conference on Computer- and Robot-assisted Surgery (CURAC)}, booktitle = {Proc. of the 18th annual conference on Computer- and Robot-assisted Surgery (CURAC)}, pages = {58 -- 64}, abstract = {Statistical Shape Models (SSMs) are a proven means for model-based 3D anatomy reconstruction from medical image data. In orthopaedics and biomechanics, SSMs are increasingly employed to individualize measurement data or to create individualized anatomical models to which implants can be adapted to or functional tests can be performed on. For modeling and analysis of articulated structures, so called articulated SSMs (aSSMs) have been developed. However, a missing feature of aSSMs is the consideration of collisions in the course of individual fitting and articulation. The aim of our work was to develop aSSMs that handle collisions between components correctly. That way it becomes possible to adjust shape and articulation in view of a physically and geometrically plausible individualization. To be able to apply collision-aware aSSMs in simulation and optimisation, our approach is based on an e� cient collision detection method employing Graphics Processing Units (GPUs).}, language = {en} } @article{KraemerMaggioniBrissonetal., author = {Kr{\"a}mer, Martin and Maggioni, Marta and Brisson, Nicholas and Zachow, Stefan and Teichgr{\"a}ber, Ulf and Duda, Georg and Reichenbach, J{\"u}rgen}, title = {T1 and T2* mapping of the human quadriceps and patellar tendons using ultra-short echo-time (UTE) imaging and bivariate relaxation parameter-based volumetric visualization}, series = {Magnetic Resonance Imaging}, volume = {63}, journal = {Magnetic Resonance Imaging}, number = {11}, doi = {10.1016/j.mri.2019.07.015}, pages = {29 -- 36}, abstract = {Quantification of magnetic resonance (MR)-based relaxation parameters of tendons and ligaments is challenging due to their very short transverse relaxation times, requiring application of ultra-short echo-time (UTE) imaging sequences. We quantify both T1 and T2⁎ in the quadriceps and patellar tendons of healthy volunteers at a field strength of 3 T and visualize the results based on 3D segmentation by using bivariate histogram analysis. We applied a 3D ultra-short echo-time imaging sequence with either variable repetition times (VTR) or variable flip angles (VFA) for T1 quantification in combination with multi-echo acquisition for extracting T2⁎. The values of both relaxation parameters were subsequently binned for bivariate histogram analysis and corresponding cluster identification, which were subsequently visualized. Based on manually-drawn regions of interest in the tendons on the relaxation parameter maps, T1 and T2⁎ boundaries were selected in the bivariate histogram to segment the quadriceps and patellar tendons and visualize the relaxation times by 3D volumetric rendering. Segmentation of bone marrow, fat, muscle and tendons was successfully performed based on the bivariate histogram analysis. Based on the segmentation results mean T2⁎ relaxation times, over the entire tendon volumes averaged over all subjects, were 1.8 ms ± 0.1 ms and 1.4 ms ± 0.2 ms for the patellar and quadriceps tendons, respectively. The mean T1 value of the patellar tendon, averaged over all subjects, was 527 ms ± 42 ms and 476 ms ± 40 ms for the VFA and VTR acquisitions, respectively. The quadriceps tendon had higher mean T1 values of 662 ms ± 97 ms (VFA method) and 637 ms ± 40 ms (VTR method) compared to the patellar tendon. 3D volumetric visualization of the relaxation times revealed that T1 values are not constant over the volume of both tendons, but vary locally. This work provided additional data to build upon the scarce literature available on relaxation times in the quadriceps and patellar tendons. We were able to segment both tendons and to visualize the relaxation parameter distributions over the entire tendon volumes.}, language = {en} } @inproceedings{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {An as-invariant-as-possible GL+(3)-based Statistical Shape Model}, series = {Proc. 7th MICCAI workshop on Mathematical Foundations of Computational Anatomy (MFCA)}, volume = {11846}, booktitle = {Proc. 7th MICCAI workshop on Mathematical Foundations of Computational Anatomy (MFCA)}, publisher = {Springer}, doi = {10.1007/978-3-030-33226-6_23}, pages = {219 -- 228}, abstract = {We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.}, language = {en} } @misc{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {A Surface-Theoretic Approach for Statistical Shape Modeling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74497}, abstract = {We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.}, language = {en} } @misc{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {An as-invariant-as-possible GL+(3)-based Statistical Shape Model}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74566}, abstract = {We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.}, language = {en} } @inproceedings{SahuStroemsdoerferMukhopadhyayetal., author = {Sahu, Manish and Str{\"o}msd{\"o}rfer, Ronja and Mukhopadhyay, Anirban and Zachow, Stefan}, title = {Endo-Sim2Real: Consistency learning-based domain adaptation for instrument segmentation}, series = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), Part III}, volume = {12263}, booktitle = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), Part III}, publisher = {Springer Nature}, doi = {https://doi.org/10.1007/978-3-030-59716-0_75}, abstract = {Surgical tool segmentation in endoscopic videos is an important component of computer assisted interventions systems. Recent success of image-based solutions using fully-supervised deep learning approaches can be attributed to the collection of big labeled datasets. However, the annotation of a big dataset of real videos can be prohibitively expensive and time consuming. Computer simulations could alleviate the manual labeling problem, however, models trained on simulated data do not generalize to real data. This work proposes a consistency-based framework for joint learning of simulated and real (unlabeled) endoscopic data to bridge this performance generalization issue. Empirical results on two data sets (15 videos of the Cholec80 and EndoVis'15 dataset) highlight the effectiveness of the proposed Endo-Sim2Real method for instrument segmentation. We compare the segmentation of the proposed approach with state-of-the-art solutions and show that our method improves segmentation both in terms of quality and quantity.}, language = {en} } @article{SahuSzengelMukhopadhyayetal.2020, author = {Sahu, Manish and Szengel, Angelika and Mukhopadhyay, Anirban and Zachow, Stefan}, title = {Surgical phase recognition by learning phase transitions}, series = {Current Directions in Biomedical Engineering (CDBME)}, volume = {6}, journal = {Current Directions in Biomedical Engineering (CDBME)}, number = {1}, publisher = {De Gruyter}, doi = {https://doi.org/10.1515/cdbme-2020-0037}, pages = {20200037}, year = {2020}, abstract = {Automatic recognition of surgical phases is an important component for developing an intra-operative context-aware system. Prior work in this area focuses on recognizing short-term tool usage patterns within surgical phases. However, the difference between intra- and inter-phase tool usage patterns has not been investigated for automatic phase recognition. We developed a Recurrent Neural Network (RNN), in particular a state-preserving Long Short Term Memory (LSTM) architecture to utilize the long-term evolution of tool usage within complete surgical procedures. For fully automatic tool presence detection from surgical video frames, a Convolutional Neural Network (CNN) based architecture namely ZIBNet is employed. Our proposed approach outperformed EndoNet by 8.1\% on overall precision for phase detection tasks and 12.5\% on meanAP for tool recognition tasks.}, language = {en} } @misc{SahuSzengelMukhopadhyayetal., author = {Sahu, Manish and Szengel, Angelika and Mukhopadhyay, Anirban and Zachow, Stefan}, title = {Analyzing laparoscopic cholecystectomy with deep learning: automatic detection of surgical tools and phases}, series = {28th International Congress of the European Association for Endoscopic Surgery (EAES)}, journal = {28th International Congress of the European Association for Endoscopic Surgery (EAES)}, abstract = {Motivation: The ever-rising volume of patients, high maintenance cost of operating rooms and time consuming analysis of surgical skills are fundamental problems that hamper the practical training of the next generation of surgeons. The hospitals prefer to keep the surgeons busy in real operations over training young surgeons for obvious economic reasons. One fundamental need in surgical training is the reduction of the time needed by the senior surgeon to review the endoscopic procedures performed by the young surgeon while minimizing the subjective bias in evaluation. The unprecedented performance of deep learning ushers the new age of data-driven automatic analysis of surgical skills. Method: Deep learning is capable of efficiently analyzing thousands of hours of laparoscopic video footage to provide an objective assessment of surgical skills. However, the traditional end-to-end setting of deep learning (video in, skill assessment out) is not explainable. Our strategy is to utilize the surgical process modeling framework to divide the surgical process into understandable components. This provides the opportunity to employ deep learning for superior yet automatic detection and evaluation of several aspects of laparoscopic cholecystectomy such as surgical tool and phase detection. We employ ZIBNet for the detection of surgical tool presence. ZIBNet employs pre-processing based on tool usage imbalance, a transfer learned 50-layer residual network (ResNet-50) and temporal smoothing. To encode the temporal evolution of tool usage (over the entire video sequence) that relates to the surgical phases, Long Short Term Memory (LSTM) units are employed with long-term dependency. Dataset: We used CHOLEC 80 dataset that consists of 80 videos of laparoscopic cholecystectomy performed by 13 surgeons, divided equally for training and testing. In these videos, up to three different tools (among 7 types of tools) can be present in a frame. Results: The mean average precision of the detection of all tools is 93.5 ranging between 86.8 and 99.3, a significant improvement (p <0.01) over the previous state-of-the-art. We observed that less frequent tools like Scissors, Irrigator, Specimen Bag etc. are more related to phase transitions. The overall precision (recall) of the detection of all surgical phases is 79.6 (81.3). Conclusion: While this is not the end goal for surgical skill analysis, the development of such a technological platform is essential toward a data-driven objective understanding of surgical skills. In future, we plan to investigate surgeon-in-the-loop analysis and feedback for surgical skill analysis.}, language = {en} } @article{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {Rigid Motion Invariant Statistical Shape Modeling based on Discrete Fundamental Forms}, series = {Medical Image Analysis}, volume = {73}, journal = {Medical Image Analysis}, doi = {10.1016/j.media.2021.102178}, abstract = {We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. Additionally, as planar configurations form a submanifold in shape space, our representation allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer's disease and osteoarthritis, respectively. In particular, we achieve state-of-the-art accuracies outperforming the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing biological shape variability, we carry out an analysis of specificity and generalization ability.}, language = {en} } @article{SahuMukhopadhyayZachow, author = {Sahu, Manish and Mukhopadhyay, Anirban and Zachow, Stefan}, title = {Simulation-to-Real domain adaptation with teacher-student learning for endoscopic instrument segmentation}, series = {International Journal of Computer Assisted Radiology and Surgery}, volume = {16}, journal = {International Journal of Computer Assisted Radiology and Surgery}, publisher = {Springer Nature}, doi = {10.1007/s11548-021-02383-4}, pages = {849 -- 859}, abstract = {Purpose Segmentation of surgical instruments in endoscopic video streams is essential for automated surgical scene understanding and process modeling. However, relying on fully supervised deep learning for this task is challenging because manual annotation occupies valuable time of the clinical experts. Methods We introduce a teacher-student learning approach that learns jointly from annotated simulation data and unlabeled real data to tackle the challenges in simulation-to-real unsupervised domain adaptation for endoscopic image segmentation. Results Empirical results on three datasets highlight the effectiveness of the proposed framework over current approaches for the endoscopic instrument segmentation task. Additionally, we provide analysis of major factors affecting the performance on all datasets to highlight the strengths and failure modes of our approach. Conclusions We show that our proposed approach can successfully exploit the unlabeled real endoscopic video frames and improve generalization performance over pure simulation-based training and the previous state-of-the-art. This takes us one step closer to effective segmentation of surgical instrument in the annotation scarce setting.}, language = {en} } @inproceedings{EstacioEhlkeTacketal., author = {Estacio, Laura and Ehlke, Moritz and Tack, Alexander and Castro-Gutierrez, Eveling and Lamecker, Hans and Mora, Rensso and Zachow, Stefan}, title = {Unsupervised Detection of Disturbances in 2D Radiographs}, series = {2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)}, booktitle = {2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)}, doi = {10.1109/ISBI48211.2021.9434091}, pages = {367 -- 370}, abstract = {We present a method based on a generative model for detection of disturbances such as prosthesis, screws, zippers, and metals in 2D radiographs. The generative model is trained in an unsupervised fashion using clinical radiographs as well as simulated data, none of which contain disturbances. Our approach employs a latent space consistency loss which has the benefit of identifying similarities, and is enforced to reconstruct X-rays without disturbances. In order to detect images with disturbances, an anomaly score is computed also employing the Frechet distance between the input X-ray and the reconstructed one using our generative model. Validation was performed using clinical pelvis radiographs. We achieved an AUC of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of our method for detecting outliers as well as the advantage of utilizing synthetic data.}, language = {en} } @misc{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {Geodesic B-Score for Improved Assessment of Knee Osteoarthritis}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81930}, abstract = {Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions.}, language = {en} } @article{TackPreimZachow, author = {Tack, Alexander and Preim, Bernhard and Zachow, Stefan}, title = {Fully automated Assessment of Knee Alignment from Full-Leg X-Rays employing a "YOLOv4 And Resnet Landmark regression Algorithm" (YARLA): Data from the Osteoarthritis Initiative}, series = {Computer Methods and Programs in Biomedicine}, volume = {205}, journal = {Computer Methods and Programs in Biomedicine}, number = {106080}, doi = {https://doi.org/10.1016/j.cmpb.2021.106080}, abstract = {We present a method for the quantification of knee alignment from full-leg X-Rays. A state-of-the-art object detector, YOLOv4, was trained to locate regions of interests (ROIs) in full-leg X-Ray images for the hip joint, the knee, and the ankle. Residual neural networks (ResNets) were trained to regress landmark coordinates for each ROI.Based on the detected landmarks the knee alignment, i.e., the hip-knee-ankle (HKA) angle, was computed. The accuracy of landmark detection was evaluated by a comparison to manually placed landmarks for 360 legs in 180 X-Rays. The accuracy of HKA angle computations was assessed on the basis of 2,943 X-Rays. Results of YARLA were compared to the results of two independent image reading studies(Cooke; Duryea) both publicly accessible via the Osteoarthritis Initiative. The agreement was evaluated using Spearman's Rho, and weighted kappa as well as regarding the correspondence of the class assignment (varus/neutral/valgus). The average difference between YARLA and manually placed landmarks was less than 2.0+- 1.5 mm for all structures (hip, knee, ankle). The average mismatch between HKA angle determinations of Cooke and Duryea was 0.09 +- 0.63°; YARLA resulted in a mismatch of 0.10 +- 0.74° compared to Cooke and of 0.18 +- 0.64° compared to Duryea. Cooke and Duryea agreed almost perfectly with respect to a weighted kappa value of 0.86, and showed an excellent reliability as measured by a Spearman's Rho value of 0.99. Similar values were achieved by YARLA, i.e., a weighted kappa value of0.83 and 0.87 and a Spearman's Rho value of 0.98 and 0.99 to Cooke and Duryea,respectively. Cooke and Duryea agreed in 92\% of all class assignments and YARLA did so in 90\% against Cooke and 92\% against Duryea. In conclusion, YARLA achieved results comparable to those of human experts and thus provides a basis for an automated assessment of knee alignment in full-leg X-Rays.}, language = {de} } @inproceedings{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {Geodesic B-Score for Improved Assessment of Knee Osteoarthritis}, series = {Proc. Information Processing in Medical Imaging (IPMI)}, booktitle = {Proc. Information Processing in Medical Imaging (IPMI)}, doi = {10.1007/978-3-030-78191-0_14}, pages = {177 -- 188}, abstract = {Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions.}, language = {en} } @article{HembusAmbellanZachowetal.2021, author = {Hembus, Jessica and Ambellan, Felix and Zachow, Stefan and Bader, Rainer}, title = {Establishment of a rolling-sliding test bench to analyze abrasive wear propagation of different bearing materials for knee implants}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {4}, doi = {10.3390/app11041886}, pages = {15}, year = {2021}, abstract = {Currently, new materials for knee implants need to be extensively and expensive tested in a knee wear simulator in a realized design. However, using a rolling-sliding test bench, these materials can be examined under the same test conditions but with simplified geometries. In the present study, the test bench was optimized, and forces were adapted to the physiological contact pressure in the knee joint using the available geometric parameters. Various polymers made of polyethylene and polyurethane articulating against test wheels made of cobalt-chromium and aluminum titanate were tested in the test bench using adapted forces based on ISO 14243-1. Polyurethane materials showed distinctly higher wear rates than polyethylene materials and showed inadequate wear resistance for use as knee implant material. Thus, the rolling-sliding test bench is an adaptable test setup for evaluating newly developed bearing materials for knee implants. It combines the advantages of screening and simulator tests and allows testing of various bearing materials under physiological load and tribological conditions of the human knee joint. The wear behavior of different material compositions and the influence of surface geometry and quality can be initially investigated without the need to produce complex implant prototypes of total knee endoprosthesis or interpositional spacers.}, language = {en} }