@inproceedings{SeimKainmuellerLameckeretal.2010, author = {Seim, Heiko and Kainm{\"u}ller, Dagmar and Lamecker, Hans and Bindernagel, Matthias and Malinowski, Jana and Zachow, Stefan}, title = {Model-based Auto-Segmentation of Knee Bones and Cartilage in MRI Data}, series = {Proc. MICCAI Workshop Medical Image Analysis for the Clinic}, booktitle = {Proc. MICCAI Workshop Medical Image Analysis for the Clinic}, editor = {v. Ginneken, B.}, pages = {215 -- 223}, year = {2010}, language = {en} } @misc{EhlkeRammLameckeretal.2012, author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Zachow, Stefan}, title = {Efficient projection and deformation of volumetric shape and intensity models for accurate simulation of X-ray images}, series = {Eurographics Workshop on Visual Computing for Biomedicine (NVIDIA best poster award)}, journal = {Eurographics Workshop on Visual Computing for Biomedicine (NVIDIA best poster award)}, year = {2012}, language = {en} } @article{RammKahntZachow2012, author = {Ramm, Heiko and Kahnt, Max and Zachow, Stefan}, title = {Patientenspezifische Simulationsmodelle f{\"u}r die funktionelle Analyse von k{\"u}nstlichem Gelenkersatz}, series = {Computer Aided Medical Engineering (CaMe)}, volume = {3}, journal = {Computer Aided Medical Engineering (CaMe)}, number = {2}, pages = {30 -- 36}, year = {2012}, language = {de} } @inproceedings{KahntRammLameckeretal.2012, author = {Kahnt, Max and Ramm, Heiko and Lamecker, Hans and Zachow, Stefan}, title = {Feature-Preserving, Multi-Material Mesh Generation using Hierarchical Oracles}, series = {Proc. MICCAI Workshop on Mesh Processing in Medical Image Analysis (MeshMed)}, volume = {7599}, booktitle = {Proc. MICCAI Workshop on Mesh Processing in Medical Image Analysis (MeshMed)}, editor = {Levine, Joshua A. and Paulsen, Rasmus R. and Zhang, Yongjie}, pages = {101 -- 111}, year = {2012}, language = {en} } @incollection{RammZachow2012, author = {Ramm, Heiko and Zachow, Stefan}, title = {Computergest{\"u}tzte Planung f{\"u}r die individuelle Implantatversorgung}, series = {Health Academy}, volume = {16}, booktitle = {Health Academy}, editor = {Niederlag, Wolfgang and Lemke, Heinz and Peitgen, Heinz-Otto and Lehrach, Hans}, pages = {145 -- 158}, year = {2012}, language = {de} } @article{KainmuellerLameckerSeimetal.2009, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Seim, Heiko and Zachow, Stefan}, title = {Multi-object segmentation of head bones}, series = {MIDAS Journal}, journal = {MIDAS Journal}, year = {2009}, language = {en} } @inproceedings{SeimKainmuellerLameckeretal.2009, author = {Seim, Heiko and Kainm{\"u}ller, Dagmar and Lamecker, Hans and Zachow, Stefan}, title = {A System for Unsupervised Extraction of Orthopaedic Parameters from CT Data}, series = {GI Workshop Softwareassistenten - Computerunterst{\"u}tzung f{\"u}r die medizinische Diagnose und Therapieplanung}, booktitle = {GI Workshop Softwareassistenten - Computerunterst{\"u}tzung f{\"u}r die medizinische Diagnose und Therapieplanung}, address = {L{\"u}beck, Germany}, pages = {1328 -- 1337}, year = {2009}, language = {en} } @inproceedings{KainmuellerLameckerSeimetal.2009, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Seim, Heiko and Zinser, Max and Zachow, Stefan}, title = {Automatic Extraction of Mandibular Nerve and Bone from Cone-Beam CT Data}, series = {Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI)}, booktitle = {Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI)}, editor = {Yang, Guang-Zhong and J. Hawkes, David and Rueckert, Daniel and Noble, J. Alison and J. Taylor, Chris}, address = {London, UK}, pages = {76 -- 83}, year = {2009}, language = {en} } @inproceedings{KainmuellerLameckerZachowetal.2009, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian}, title = {An Articulated Statistical Shape Model for Accurate Hip Joint Segmentation}, series = {EBMC 2009. Int. Conf. of the IEEE Eng. in Med. and Biol. Society (EMBC)}, booktitle = {EBMC 2009. Int. Conf. of the IEEE Eng. in Med. and Biol. Society (EMBC)}, address = {Minneapolis, USA}, pages = {6345 -- 6351}, year = {2009}, language = {en} } @inproceedings{SeimKainmuellerHelleretal.2009, author = {Seim, Heiko and Kainm{\"u}ller, Dagmar and Heller, Markus O. and Zachow, Stefan and Hege, Hans-Christian}, title = {Automatic Extraction of Anatomical Landmarks from Medical Image Data: An Evaluation of Different Methods}, series = {Proc. of IEEE Int. Symposium on Biomedical Imaging (ISBI)}, booktitle = {Proc. of IEEE Int. Symposium on Biomedical Imaging (ISBI)}, address = {Boston, MA, USA}, pages = {538 -- 541}, year = {2009}, language = {en} } @article{KainmuellerLameckerZachow2009, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Zachow, Stefan}, title = {Multi-object Segmentation with Coupled Deformable Models}, series = {Annals of the British Machine Vision Association (BMVA)}, volume = {5}, journal = {Annals of the British Machine Vision Association (BMVA)}, pages = {1 -- 10}, year = {2009}, language = {en} } @article{ZachowMuiggHildebrandtetal.2009, author = {Zachow, Stefan and Muigg, Philipp and Hildebrandt, Thomas and Doleisch, Helmut and Hege, Hans-Christian}, title = {Visual Exploration of Nasal Airflow}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {8}, doi = {10.1109/TVCG.2009.198}, pages = {1407 -- 1414}, year = {2009}, language = {en} } @article{ZachowDeuflhard2008, author = {Zachow, Stefan and Deuflhard, Peter}, title = {Computergest{\"u}tzte Planung in der kraniofazialen Chirurgie}, series = {Face 01/08, Int. Mag. of Orofacial Esthetics}, journal = {Face 01/08, Int. Mag. of Orofacial Esthetics}, publisher = {Oemus Journale Leipzig}, pages = {43 -- 49}, year = {2008}, language = {en} } @inproceedings{ZilskeLameckerZachow2008, author = {Zilske, Michael and Lamecker, Hans and Zachow, Stefan}, title = {Adaptive Remeshing of Non-Manifold Surfaces}, series = {Eurographics 2008 Annex to the Conf. Proc.}, booktitle = {Eurographics 2008 Annex to the Conf. Proc.}, pages = {207 -- 211}, year = {2008}, language = {en} } @inproceedings{SeimLameckerZachow2008, author = {Seim, Heiko and Lamecker, Hans and Zachow, Stefan}, title = {Segmentation of Bony Structures with Ligament Attachment Sites}, series = {Bildverarbeitung f{\"u}r die Medizin 2008}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2008}, publisher = {Springer}, doi = {10.1007/978-3-540-78640-5_42}, pages = {207 -- 211}, year = {2008}, language = {en} } @inproceedings{NeugebauerJanigaZachowetal.2008, author = {Neugebauer, Mathias and Janiga, Gabor and Zachow, Stefan and Krischek, {\"O}zlem and Preim, Bernhard}, title = {Generierung qualitativ hochwertiger Modelle f{\"u}r die Simulation von Blutfluss in zerebralen Aneurysmen}, series = {Proc. of Simulation and Visualization 2008}, booktitle = {Proc. of Simulation and Visualization 2008}, editor = {Hauser, Helwig}, pages = {221 -- 235}, year = {2008}, language = {en} } @inproceedings{DornheimBornZachowetal.2008, author = {Dornheim, Jana and Born, Silvia and Zachow, Stefan and Gessat, Michael and Wellein, Daniela and Strauß, Gero and Preim, Bernhard and Bartz, Dirk}, title = {Bildanalyse, Visualisierung und Modellerstellung f{\"u}r die Implantatplanung im Mittelohr}, series = {Proc. of Simulation and Visualization 2008}, booktitle = {Proc. of Simulation and Visualization 2008}, editor = {Hauser, Helwig}, pages = {139 -- 154}, year = {2008}, language = {en} } @article{SteinmannBartschZachowetal.2008, author = {Steinmann, Alexander and Bartsch, Peter and Zachow, Stefan and Hildebrandt, Thomas}, title = {Breathing Easily: Simulation of airflow in human noses can become a useful rhinosurgery planning tool}, series = {ANSYS Advantage}, volume = {Vol. II, No. 1}, journal = {ANSYS Advantage}, pages = {30 -- 31}, year = {2008}, language = {en} } @article{WeiserZachowDeuflhard2010, author = {Weiser, Martin and Zachow, Stefan and Deuflhard, Peter}, title = {Craniofacial Surgery Planning Based on Virtual Patient Models}, series = {it - Information Technology}, volume = {52}, journal = {it - Information Technology}, number = {5}, publisher = {Oldenbourg Verlagsgruppe}, doi = {10.1524/itit.2010.0600}, pages = {258 -- 263}, year = {2010}, language = {en} } @incollection{ZachowHahnLange2010, author = {Zachow, Stefan and Hahn, Horst and Lange, Thomas}, title = {Computerassistierte Chirugieplanung}, series = {Computerassistierte Chirurgie}, booktitle = {Computerassistierte Chirurgie}, editor = {Schlag, Peter and Eulenstein, Sebastian and Lange, Thomas}, publisher = {Elsevier}, pages = {119 -- 149}, year = {2010}, language = {en} } @inproceedings{KainmuellerLameckerSeimetal.2010, author = {Kainm{\"u}ller, Dagmar and Lamecker, Hans and Seim, Heiko and Zachow, Stefan and Hege, Hans-Christian}, title = {Improving Deformable Surface Meshes through Omni-directional Displacements and MRFs}, series = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI)}, volume = {6361}, booktitle = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI)}, editor = {Navab, Tianzi and P. W. Pluim, Josien and Viergever, Max}, publisher = {Springer}, doi = {10.1007/978-3-642-15705-9_28}, pages = {227 -- 234}, year = {2010}, language = {en} } @inproceedings{ZachowKubiackMalinowskietal.2010, author = {Zachow, Stefan and Kubiack, Kim and Malinowski, Jana and Lamecker, Hans and Essig, Harald and Gellrich, Nils-Claudius}, title = {Modellgest{\"u}tzte chirurgische Rekonstruktion komplexer Mittelgesichtsfrakturen}, series = {Proc. BMT, Biomed Tech 2010}, volume = {55 (Suppl 1)}, booktitle = {Proc. BMT, Biomed Tech 2010}, publisher = {Walter de Gruyter-Verlag}, pages = {107 -- 108}, year = {2010}, language = {de} } @inproceedings{LameckerKainmuellerSeimetal.2010, author = {Lamecker, Hans and Kainm{\"u}ller, Dagmar and Seim, Heiko and Zachow, Stefan}, title = {Automatische 3D Rekonstruktion des Unterkiefers und der Mandibul{\"a}rnerven auf Basis dentaler Bildgebung}, series = {Proc. BMT, Biomed Tech}, volume = {55 (Suppl. 1)}, booktitle = {Proc. BMT, Biomed Tech}, publisher = {Walter de Gruyter-Verlag}, pages = {35 -- 36}, year = {2010}, language = {en} } @article{DworzakLameckervonBergetal.2010, author = {Dworzak, Jalda and Lamecker, Hans and von Berg, Jens and Klinder, Tobias and Lorenz, Cristian and Kainm{\"u}ller, Dagmar and Seim, Heiko and Hege, Hans-Christian and Zachow, Stefan}, title = {3D Reconstruction of the Human Rib Cage from 2D Projection Images using a Statistical Shape Model}, series = {Int. J. Comput. Assist. Radiol. Surg.}, volume = {5}, journal = {Int. J. Comput. Assist. Radiol. Surg.}, number = {2}, publisher = {Springer}, issn = {1861-6410}, doi = {10.1007/s11548-009-0390-2}, pages = {111 -- 124}, year = {2010}, language = {en} } @misc{KamerNoserLameckeretal.2006, author = {Kamer, Lukas and Noser, Hansrudi and Lamecker, Hans and Zachow, Stefan and Wittmers, Antonia and Kaup, Thomas and Schramm, Alexander and Hammer, Beat}, title = {Three-dimensional statistical shape analysis - A useful tool for developing a new type of orbital implant?}, publisher = {AO Development Institute, New Products Brochure 2/06}, pages = {20 -- 21}, year = {2006}, language = {en} } @article{HepptHildebrandtSteinmannetal.2007, author = {Heppt, Werner and Hildebrandt, Thomas and Steinmann, Alexander and Zachow, Stefan}, title = {Aesthetic and Function in Rhinoplasty}, series = {Springer Journal}, volume = {264 (Suppl 1), RL 126}, journal = {Springer Journal}, pages = {307}, year = {2007}, language = {en} } @inproceedings{ZachowZilskeHege2007, author = {Zachow, Stefan and Zilske, Michael and Hege, Hans-Christian}, title = {3D Reconstruction of Individual Anatomy from Medical Image Data: Segmentation and Geometry Processing}, series = {25. ANSYS Conference \& CADFEM Users' Meeting}, booktitle = {25. ANSYS Conference \& CADFEM Users' Meeting}, address = {Dresden}, year = {2007}, language = {en} } @article{GessatZachowBurgertetal.2007, author = {Gessat, Michael and Zachow, Stefan and Burgert, Oliver and Lemke, Heinz}, title = {Geometric Meshes in Medical Applications - Steps towards a specification of Geometric Models in DICOM}, series = {Int. J. of Computer Assisted Radiology and Surgery (CARS)}, journal = {Int. J. of Computer Assisted Radiology and Surgery (CARS)}, doi = {10.1007/s11548-007-0112-6}, pages = {440 -- 442}, year = {2007}, language = {en} } @article{HildebrandtZachowSteinmannetal.2007, author = {Hildebrandt, Thomas and Zachow, Stefan and Steinmann, Alexander and Heppt, Werner}, title = {Innovation in der Funktionell-{\"A}sthetischen Nasenchirurgie: Rhino-CFD}, series = {Face, Int. Mag. of Orofacial Esthetics}, journal = {Face, Int. Mag. of Orofacial Esthetics}, publisher = {Oemus Journale Leipzig}, pages = {20 -- 23}, year = {2007}, language = {en} } @article{ZachowSteinmannHildebrandtetal.2007, author = {Zachow, Stefan and Steinmann, Alexander and Hildebrandt, Thomas and Heppt, Werner}, title = {Understanding nasal airflow via CFD simulation and visualization}, series = {Proc. Computer Aided Surgery around the Head}, journal = {Proc. Computer Aided Surgery around the Head}, pages = {173 -- 176}, year = {2007}, language = {en} } @article{LameckerKamerWittmersetal.2007, author = {Lamecker, Hans and Kamer, Lukas and Wittmers, Antonia and Zachow, Stefan and Kaup, Thomas and Schramm, Alexander and Noser, Hansrudi and Hammer, Beat}, title = {A method for the three-dimensional statistical shape analysis of the bony orbit}, series = {Proc. Computer Aided Surgery around the Head}, journal = {Proc. Computer Aided Surgery around the Head}, pages = {94 -- 97}, year = {2007}, language = {en} } @inproceedings{ZachowLameckerElsholtzetal.2005, author = {Zachow, Stefan and Lamecker, Hans and Elsholtz, Barbara and Stiller, Michael}, title = {Reconstruction of mandibular dysplasia using a statistical 3D shape model}, series = {Proc. Computer Assisted Radiology and Surgery (CARS)}, booktitle = {Proc. Computer Assisted Radiology and Surgery (CARS)}, address = {Berlin, Germany}, doi = {10.1016/j.ics.2005.03.339}, pages = {1238 -- 1243}, year = {2005}, language = {en} } @inproceedings{NkenkeHaeuslerNeukametal.2005, author = {Nkenke, Emeka and H{\"a}usler, Gerd and Neukam, Friedrich and Zachow, Stefan}, title = {Streak artifact correction of CT data by optical 3D imaging in the simulation of orthognathic surgery}, series = {Computer Assisted Radiology and Surgery (CARS)}, booktitle = {Computer Assisted Radiology and Surgery (CARS)}, address = {Berlin Germany}, doi = {doi:10.1016/j.ics.2005.03.278}, year = {2005}, language = {en} } @inproceedings{NkenkeZachowHaeusler2005, author = {Nkenke, Emeka and Zachow, Stefan and H{\"a}usler, Gerd}, title = {Fusion von optischen 3D- und CT-Daten des Gebisses zur Metallartefaktkorrektur vor computerassistierter Planung MKG-chirurgischer Eingriffe}, series = {Symposium der Arbeitsgemeinschaf f{\"u}r Kieferchirurgie}, booktitle = {Symposium der Arbeitsgemeinschaf f{\"u}r Kieferchirurgie}, address = {Bad Homburg v.d.H}, year = {2005}, language = {en} } @article{LameckerZachowHaberletal.2005, author = {Lamecker, Hans and Zachow, Stefan and Haberl, Hannes and Stiller, Michael}, title = {Medical applications for statistical shape models}, series = {Computer Aided Surgery around the Head, Fortschritt-Berichte VDI - Biotechnik/Medizintechnik}, volume = {17 (258)}, journal = {Computer Aided Surgery around the Head, Fortschritt-Berichte VDI - Biotechnik/Medizintechnik}, pages = {61}, year = {2005}, language = {en} } @article{LameckerZachowWittmersetal.2006, author = {Lamecker, Hans and Zachow, Stefan and Wittmers, Antonia and Weber, Britta and Hege, Hans-Christian and Elsholtz, Barbara and Stiller, Michael}, title = {Automatic segmentation of mandibles in low-dose CT-data}, series = {Int. J. Computer Assisted Radiology and Surgery}, volume = {1(1)}, journal = {Int. J. Computer Assisted Radiology and Surgery}, pages = {393 -- 395}, year = {2006}, language = {en} } @article{LameckerZachowHegeetal.2006, author = {Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian and Z{\"o}ckler, Maja}, title = {Surgical treatment of craniosynostosis based on a statistical 3D-shape model}, series = {Int. J. Computer Assisted Radiology and Surgery}, volume = {1(1)}, journal = {Int. J. Computer Assisted Radiology and Surgery}, doi = {10.1007/s11548-006-0024-x}, pages = {253 -- 254}, year = {2006}, language = {en} } @article{ZachowHegeDeuflhard2006, author = {Zachow, Stefan and Hege, Hans-Christian and Deuflhard, Peter}, title = {Computer assisted planning in cranio-maxillofacial surgery}, series = {Journal of Computing and Information Technology}, volume = {14(1)}, journal = {Journal of Computing and Information Technology}, pages = {53 -- 64}, year = {2006}, language = {en} } @article{ZachowLameckerElsholtzetal.2006, author = {Zachow, Stefan and Lamecker, Hans and Elsholtz, Barbara and Stiller, Michael}, title = {Is the course of the mandibular nerve deducible from the shape of the mandible?}, series = {Int. J. of Computer Assisted Radiology and Surgery}, journal = {Int. J. of Computer Assisted Radiology and Surgery}, publisher = {Springer}, pages = {415 -- 417}, year = {2006}, language = {en} } @article{ZachowSteinmannHildebrandtetal.2006, author = {Zachow, Stefan and Steinmann, Alexander and Hildebrandt, Thomas and Weber, Rainer and Heppt, Werner}, title = {CFD simulation of nasal airflow: Towards treatment planning for functional rhinosurgery}, series = {Int. J. of Computer Assisted Radiology and Surgery}, journal = {Int. J. of Computer Assisted Radiology and Surgery}, publisher = {Springer}, pages = {165 -- 167}, year = {2006}, language = {en} } @inproceedings{EhlkeFrenzelRammetal., author = {Ehlke, Moritz and Frenzel, Thomas and Ramm, Heiko and Shandiz, Mohsen Akbari and Anglin, Carolyn and Zachow, Stefan}, title = {Towards Robust Measurement Of Pelvic Parameters From AP Radiographs Using Articulated 3D Models}, series = {Computer Assisted Radiology and Surgery (CARS)}, booktitle = {Computer Assisted Radiology and Surgery (CARS)}, abstract = {Patient-specific parameters such as the orientation of the acetabulum or pelvic tilt are useful for custom planning for total hip arthroplasty (THA) and for evaluating the outcome of surgical interventions. The gold standard in obtaining pelvic parameters is from three-dimensional (3D) computed tomography (CT) imaging. However, this adds time and cost, exposes the patient to a substantial radiation dose, and does not allow for imaging under load (e.g. while the patient is standing). If pelvic parameters could be reliably derived from the standard anteroposterior (AP) radiograph, preoperative planning would be more widespread, and research analyses could be applied to retrospective data, after a postoperative issue is discovered. The goal of this work is to enable robust measurement of two surgical parameters of interest: the tilt of the anterior pelvic plane (APP) and the orientation of the natural acetabulum. We present a computer-aided reconstruction method to determine the APP and natural acetabular orientation from a single, preoperative X-ray. It can easily be extended to obtain other important preoperative and postoperative parameters solely based on a single AP radiograph.}, language = {en} } @misc{EhlkeFrenzelRammetal., author = {Ehlke, Moritz and Frenzel, Thomas and Ramm, Heiko and Shandiz, Mohsen Akbari and Anglin, Carolyn and Zachow, Stefan}, title = {Towards Robust Measurement of Pelvic Parameters from AP Radiographs using Articulated 3D Models}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53707}, abstract = {Patient-specific parameters such as the orientation of the acetabulum or pelvic tilt are useful for custom planning for total hip arthroplasty (THA) and for evaluating the outcome of surgical interventions. The gold standard in obtaining pelvic parameters is from three-dimensional (3D) computed tomography (CT) imaging. However, this adds time and cost, exposes the patient to a substantial radiation dose, and does not allow for imaging under load (e.g. while the patient is standing). If pelvic parameters could be reliably derived from the standard anteroposterior (AP) radiograph, preoperative planning would be more widespread, and research analyses could be applied to retrospective data, after a postoperative issue is discovered. The goal of this work is to enable robust measurement of two surgical parameters of interest: the tilt of the anterior pelvic plane (APP) and the orientation of the natural acetabulum. We present a computer-aided reconstruction method to determine the APP and natural acetabular orientation from a single, preoperative X-ray. It can easily be extended to obtain other important preoperative and postoperative parameters solely based on a single AP radiograph.}, language = {en} } @article{LemanisZachowFusseisetal., author = {Lemanis, Robert and Zachow, Stefan and Fusseis, Florian and Hoffmann, Ren{\´e}}, title = {A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells}, series = {Paleobiology}, volume = {41}, journal = {Paleobiology}, number = {2}, publisher = {Cambridge University Press}, address = {Cambridge}, doi = {10.1017/pab.2014.17}, pages = {313 -- 329}, abstract = {The chambered shell of modern cephalopods functions as a buoyancy apparatus, allowing the animal to enter the water column without expending a large amount of energy to overcome its own weight. Indeed, the chambered shell is largely considered a key adaptation that allowed the earliest cephalopods to leave the ocean floor and enter the water column. It has been argued by some, however, that the iconic chambered shell of Paleozoic and Mesozoic ammonoids did not provide a sufficiently buoyant force to compensate for the weight of the entire animal, thus restricting ammonoids to a largely benthic lifestyle reminiscent of some octopods. Here we develop a technique using high-resolution computed tomography to quantify the buoyant properties of chambered shells without reducing the shell to ideal spirals or eliminating inherent biological variability by using mathematical models that characterize past work in this area. This technique has been tested on Nautilus pompilius and is now extended to the extant deep-sea squid Spirula spirula and the Jurassic ammonite Cadoceras sp. hatchling. Cadoceras is found to have possessed near-neutral to positive buoyancy if hatched when the shell possessed between three and five chambers. However, we show that the animal could also overcome degrees of negative buoyancy through swimming, similar to the paralarvae of modern squids. These calculations challenge past inferences of benthic life habits based solely on calculations of negative buoyancy. The calculated buoyancy of Cadoceras supports the possibility of planktonic dispersal of ammonite hatchlings. This information is essential to understanding ammonoid ecology as well as biotic interactions and has implications for the interpretation of geochemical data gained from the isotopic analysis of the shell.}, language = {en} } @inproceedings{TackZachow, author = {Tack, Alexander and Zachow, Stefan}, title = {Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, series = {IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)}, booktitle = {IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)}, doi = {10.1109/ISBI.2019.8759201}, pages = {40 -- 43}, abstract = {Volumetry of cartilage of the knee is needed for knee osteoarthritis (KOA) assessment. It is typically performed manually in a tedious and subjective process. We developed a method for an automated, segmentation-based quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data and cartilage volumetry readings performed by clinical experts for 1378 subjects provided by the Osteoarthritis Initiative. It was shown that 3D CNNs are able to achieve volume measures comparable to the magnitude of variation between expert readings and the real in vivo situation. In the future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as longitudinal analysis of KOA progression.}, language = {en} } @inproceedings{NeumannHellwichZachow, author = {Neumann, Mario and Hellwich, Olaf and Zachow, Stefan}, title = {Localization and Classification of Teeth in Cone Beam CT using Convolutional Neural Networks}, series = {Proc. of the 18th annual conference on Computer- and Robot-assisted Surgery (CURAC)}, booktitle = {Proc. of the 18th annual conference on Computer- and Robot-assisted Surgery (CURAC)}, isbn = {978-3-00-063717-9}, pages = {182 -- 188}, abstract = {In dentistry, software-based medical image analysis and visualization provide efficient and accurate diagnostic and therapy planning capabilities. We present an approach for the automatic recognition of tooth types and positions in digital volume tomography (DVT). By using deep learning techniques in combination with dimensionality reduction through non-planar reformatting of the jaw anatomy, DVT data can be efficiently processed and teeth reliably recognized and classified, even in the presence of imaging artefacts, missing or dislocated teeth. We evaluated our approach, which is based on 2D Convolutional Neural Networks (CNNs), on 118 manually annotated cases of clinical DVT datasets. Our proposed method correctly classifies teeth with an accuracy of 94\% within a limit of 2mm distance to ground truth labels.}, language = {en} } @inproceedings{JoachimskyMaIckingetal., author = {Joachimsky, Robert and Ma, Lihong and Icking, Christian and Zachow, Stefan}, title = {A Collision-Aware Articulated Statistical Shape Model of the Human Spine}, series = {Proc. of the 18th annual conference on Computer- and Robot-assisted Surgery (CURAC)}, booktitle = {Proc. of the 18th annual conference on Computer- and Robot-assisted Surgery (CURAC)}, pages = {58 -- 64}, abstract = {Statistical Shape Models (SSMs) are a proven means for model-based 3D anatomy reconstruction from medical image data. In orthopaedics and biomechanics, SSMs are increasingly employed to individualize measurement data or to create individualized anatomical models to which implants can be adapted to or functional tests can be performed on. For modeling and analysis of articulated structures, so called articulated SSMs (aSSMs) have been developed. However, a missing feature of aSSMs is the consideration of collisions in the course of individual fitting and articulation. The aim of our work was to develop aSSMs that handle collisions between components correctly. That way it becomes possible to adjust shape and articulation in view of a physically and geometrically plausible individualization. To be able to apply collision-aware aSSMs in simulation and optimisation, our approach is based on an e� cient collision detection method employing Graphics Processing Units (GPUs).}, language = {en} } @article{KraemerMaggioniBrissonetal., author = {Kr{\"a}mer, Martin and Maggioni, Marta and Brisson, Nicholas and Zachow, Stefan and Teichgr{\"a}ber, Ulf and Duda, Georg and Reichenbach, J{\"u}rgen}, title = {T1 and T2* mapping of the human quadriceps and patellar tendons using ultra-short echo-time (UTE) imaging and bivariate relaxation parameter-based volumetric visualization}, series = {Magnetic Resonance Imaging}, volume = {63}, journal = {Magnetic Resonance Imaging}, number = {11}, doi = {10.1016/j.mri.2019.07.015}, pages = {29 -- 36}, abstract = {Quantification of magnetic resonance (MR)-based relaxation parameters of tendons and ligaments is challenging due to their very short transverse relaxation times, requiring application of ultra-short echo-time (UTE) imaging sequences. We quantify both T1 and T2⁎ in the quadriceps and patellar tendons of healthy volunteers at a field strength of 3 T and visualize the results based on 3D segmentation by using bivariate histogram analysis. We applied a 3D ultra-short echo-time imaging sequence with either variable repetition times (VTR) or variable flip angles (VFA) for T1 quantification in combination with multi-echo acquisition for extracting T2⁎. The values of both relaxation parameters were subsequently binned for bivariate histogram analysis and corresponding cluster identification, which were subsequently visualized. Based on manually-drawn regions of interest in the tendons on the relaxation parameter maps, T1 and T2⁎ boundaries were selected in the bivariate histogram to segment the quadriceps and patellar tendons and visualize the relaxation times by 3D volumetric rendering. Segmentation of bone marrow, fat, muscle and tendons was successfully performed based on the bivariate histogram analysis. Based on the segmentation results mean T2⁎ relaxation times, over the entire tendon volumes averaged over all subjects, were 1.8 ms ± 0.1 ms and 1.4 ms ± 0.2 ms for the patellar and quadriceps tendons, respectively. The mean T1 value of the patellar tendon, averaged over all subjects, was 527 ms ± 42 ms and 476 ms ± 40 ms for the VFA and VTR acquisitions, respectively. The quadriceps tendon had higher mean T1 values of 662 ms ± 97 ms (VFA method) and 637 ms ± 40 ms (VTR method) compared to the patellar tendon. 3D volumetric visualization of the relaxation times revealed that T1 values are not constant over the volume of both tendons, but vary locally. This work provided additional data to build upon the scarce literature available on relaxation times in the quadriceps and patellar tendons. We were able to segment both tendons and to visualize the relaxation parameter distributions over the entire tendon volumes.}, language = {en} } @inproceedings{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {An as-invariant-as-possible GL+(3)-based Statistical Shape Model}, series = {Proc. 7th MICCAI workshop on Mathematical Foundations of Computational Anatomy (MFCA)}, volume = {11846}, booktitle = {Proc. 7th MICCAI workshop on Mathematical Foundations of Computational Anatomy (MFCA)}, publisher = {Springer}, doi = {10.1007/978-3-030-33226-6_23}, pages = {219 -- 228}, abstract = {We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.}, language = {en} } @misc{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {A Surface-Theoretic Approach for Statistical Shape Modeling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74497}, abstract = {We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.}, language = {en} } @misc{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {An as-invariant-as-possible GL+(3)-based Statistical Shape Model}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74566}, abstract = {We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.}, language = {en} }