@misc{ZilskeLameckerZachow, author = {Zilske, Michael and Lamecker, Hans and Zachow, Stefan}, title = {Adaptive Remeshing of Non-Manifold Surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9445}, number = {07-01}, abstract = {We present a unified approach for consistent remeshing of arbitrary non-manifold triangle meshes with additional user-defined feature lines, which together form a feature skeleton. Our method is based on local operations only and produces meshes of high regularity and triangle quality while preserving the geometry as well as topology of the feature skeleton and the input mesh.}, language = {en} } @misc{ZachowZilskeHege, author = {Zachow, Stefan and Zilske, Michael and Hege, Hans-Christian}, title = {3D reconstruction of individual anatomy from medical image data: Segmentation and geometry processing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10440}, number = {07-41}, abstract = {For medical diagnosis, visualization, and model-based therapy planning three-dimensional geometric reconstructions of individual anatomical structures are often indispensable. Computer-assisted, model-based planning procedures typically cover specific modifications of "virtual anatomy" as well as numeric simulations of associated phenomena, like e.g. mechanical loads, fluid dynamics, or diffusion processes, in order to evaluate a potential therapeutic outcome. Since internal anatomical structures cannot be measured optically or mechanically in vivo, three-dimensional reconstruction of tomographic image data remains the method of choice. In this work the process chain of individual anatomy reconstruction is described which consists of segmentation of medical image data, geometrical reconstruction of all relevant tissue interfaces, up to the generation of geometric approximations (boundary surfaces and volumetric meshes) of three-dimensional anatomy being suited for finite element analysis. All results presented herein are generated with amira ® - a highly interactive software system for 3D data analysis, visualization and geometry reconstruction.}, language = {en} } @misc{WeiserErdmannSchenkletal.2017, author = {Weiser, Martin and Erdmann, Bodo and Schenkl, Sebastian and Muggenthaler, Holger and Hubig, Michael and Mall, Gita and Zachow, Stefan}, title = {Uncertainty in Temperature-Based Determination of Time of Death}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63818}, year = {2017}, abstract = {Temperature-based estimation of time of death (ToD) can be per- formed either with the help of simple phenomenological models of corpse cooling or with detailed mechanistic (thermodynamic) heat transfer mod- els. The latter are much more complex, but allow a higher accuracy of ToD estimation as in principle all relevant cooling mechanisms can be taken into account. The potentially higher accuracy depends on the accuracy of tissue and environmental parameters as well as on the geometric resolution. We in- vestigate the impact of parameter variations and geometry representation on the estimated ToD based on a highly detailed 3D corpse model, that has been segmented and geometrically reconstructed from a computed to- mography (CT) data set, differentiating various organs and tissue types. From that we identify the most crucial parameters to measure or estimate, and obtain a local uncertainty quantifcation for the ToD.}, language = {en} } @misc{TycowiczAmbellanMukhopadhyayetal., author = {Tycowicz, Christoph von and Ambellan, Felix and Mukhopadhyay, Anirban and Zachow, Stefan}, title = {A Riemannian Statistical Shape Model using Differential Coordinates}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61175}, abstract = {We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidian structure. A key advantage of our framework is that statistics in a manifold shape space become numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidian approach in terms of shape-based classification of morphological disorders.}, language = {en} } @misc{TackZachow, author = {Tack, Alexander and Zachow, Stefan}, title = {Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71439}, abstract = {Volumetry of the cartilage of the knee, as needed for the assessment of knee osteoarthritis (KOA), is typically performed in a tedious and subjective process. We present an automated segmentation-based method for the quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data as well as cartilage volumetry readings given by clinical experts for 1378 subjects. It was shown that 3D CNNs can be employed for cartilage volumetry with an accuracy similar to expert volumetry readings. In future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as assessment of KOA progression via longitudinal analysis.}, language = {en} } @misc{TackShestakovLuedkeetal., author = {Tack, Alexander and Shestakov, Alexey and L{\"u}dke, David and Zachow, Stefan}, title = {A deep multi-task learning method for detection of meniscal tears in MRI data from the Osteoarthritis Initiative database}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-84415}, abstract = {We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on a complete 3D MRI scan. Our approach detects the presence of meniscal tears in three anatomical sub-regions (anterior horn, meniscal body, posterior horn) for both the Medial Meniscus (MM) and the Lateral Meniscus (LM) individually. For optimal performance of our method, we investigate how to preprocess the MRI data or how to train the CNN such that only relevant information within a Region of Interest (RoI) of the data volume is taken into account for meniscal tear detection. We propose meniscal tear detection combined with a bounding box regressor in a multi-task deep learning framework to let the CNN implicitly consider the corresponding RoIs of the menisci. We evaluate the accuracy of our CNN-based meniscal tear detection approach on 2,399 Double Echo Steady-State (DESS) MRI scans from the Osteoarthritis Initiative database. In addition, to show that our method is capable of generalizing to other MRI sequences, we also adapt our model to Intermediate-Weighted Turbo Spin-Echo (IW TSE) MRI scans. To judge the quality of our approaches, Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values are evaluated for both MRI sequences. For the detection of tears in DESS MRI, our method reaches AUC values of 0.94, 0.93, 0.93 (anterior horn, body, posterior horn) in MM and 0.96, 0.94, 0.91 in LM. For the detection of tears in IW TSE MRI data, our method yields AUC values of 0.84, 0.88, 0.86 in MM and 0.95, 0.91, 0.90 in LM. In conclusion, the presented method achieves high accuracy for detecting meniscal tears in both DESS and IW TSE MRI data. Furthermore, our method can be easily trained and applied to other MRI sequences.}, language = {en} } @misc{TackMukhopadhyayZachow, author = {Tack, Alexander and Mukhopadhyay, Anirban and Zachow, Stefan}, title = {Knee Menisci Segmentation using Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, volume = {26}, number = {5}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-68038}, pages = {680 -- 688}, abstract = {Abstract: Objective: To present a novel method for automated segmentation of knee menisci from MRIs. To evaluate quantitative meniscal biomarkers for osteoarthritis (OA) estimated thereof. Method: A segmentation method employing convolutional neural networks in combination with statistical shape models was developed. Accuracy was evaluated on 88 manual segmentations. Meniscal volume, tibial coverage, and meniscal extrusion were computed and tested for differences between groups of OA, joint space narrowing (JSN), and WOMAC pain. Correlation between computed meniscal extrusion and MOAKS experts' readings was evaluated for 600 subjects. Suitability of biomarkers for predicting incident radiographic OA from baseline to 24 months was tested on a group of 552 patients (184 incident OA, 386 controls) by performing conditional logistic regression. Results: Segmentation accuracy measured as Dice Similarity Coefficient was 83.8\% for medial menisci (MM) and 88.9\% for lateral menisci (LM) at baseline, and 83.1\% and 88.3\% at 12-month follow-up. Medial tibial coverage was significantly lower for arthritic cases compared to non-arthritic ones. Medial meniscal extrusion was significantly higher for arthritic knees. A moderate correlation between automatically computed medial meniscal extrusion and experts' readings was found (ρ=0.44). Mean medial meniscal extrusion was significantly greater for incident OA cases compared to controls (1.16±0.93 mm vs. 0.83±0.92 mm; p<0.05). Conclusion: Especially for medial menisci an excellent segmentation accuracy was achieved. Our meniscal biomarkers were validated by comparison to experts' readings as well as analysis of differences w.r.t groups of OA, JSN, and WOMAC pain. It was confirmed that medial meniscal extrusion is a predictor for incident OA.}, language = {en} } @misc{StallingSeebassZachow, author = {Stalling, Detlev and Seebass, Martin and Zachow, Stefan}, title = {Mehrschichtige Oberfl{\"a}chenmodelle zur computergest{\"u}tzten Planung in der Chirurgie}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5661}, number = {TR-98-05}, abstract = {Polygonale Sch{\"a}delmodelle bilden ein wichtiges Hilfsmittel f{\"u}r computergest{\"u}tzte Planungen im Bereich der plastischen Chirurgie. Wir beschreiben, wie derartige Modelle automatisch aus hochaufgel{\"o}sten CT-Datens{\"a}tzen erzeugt werden k{\"o}nnen. Durch einen lokal steuerbaren Simplifizierungsalgorithmus werden die Modelle so weit vereinfacht, daß auch auf kleineren Graphikcomputern interaktives Arbeiten m{\"o}glich wird. Die Verwendung eines speziellen Transparenzmodells erm{\"o}glicht den ungehinderten Blick auf die bei der Planung relevanten Knochenstrukturen und l{\"a}ßt den Benutzer zugleich die Kopfumrisse des Patienten erkennen.}, language = {de} } @misc{SahuDillMukhopadyayetal., author = {Sahu, Manish and Dill, Sabrina and Mukhopadyay, Anirban and Zachow, Stefan}, title = {Surgical Tool Presence Detection for Cataract Procedures}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69110}, abstract = {This article outlines the submission to the CATARACTS challenge for automatic tool presence detection [1]. Our approach for this multi-label classification problem comprises labelset-based sampling, a CNN architecture and temporal smothing as described in [3], which we call ZIB-Res-TS.}, language = {en} } @misc{RammMorilloVictoriaTodtetal., author = {Ramm, Heiko and Morillo Victoria, Oscar Salvador and Todt, Ingo and Schirmacher, Hartmut and Ernst, Arneborg and Zachow, Stefan and Lamecker, Hans}, title = {Visual Support for Positioning Hearing Implants}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42495}, abstract = {We present a software planning tool that provides intuitive visual feedback for finding suitable positions of hearing implants in the human temporal bone. After an automatic reconstruction of the temporal bone anatomy the tool pre-positions the implant and allows the user to adjust its position interactively with simple 2D dragging and rotation operations on the bone's surface. During this procedure, visual elements like warning labels on the implant or color encoded bone density information on the bone geometry provide guidance for the determination of a suitable fit.}, language = {en} } @misc{LamasRodriguezEhlkeHoffmannetal., author = {Lamas-Rodr{\´i}guez, Juli{\´a}n and Ehlke, Moritz and Hoffmann, Ren{\´e} and Zachow, Stefan}, title = {GPU-accelerated denoising of large tomographic data sets with low SNR}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56339}, abstract = {Enhancements in tomographic imaging techniques facilitate non-destructive methods for visualizing fossil structures. However, to penetrate dense materials such as sediments or pyrites, image acquisition is typically performed with high beam energy and very sensitive image intensifiers, leading to artifacts and noise in the acquired data. The analysis of delicate fossil structures requires the images to be captured in maximum resolution, resulting in large data sets of several giga bytes (GB) in size. Since the structural information of interest is often almost in the same spatial range as artifacts and noise, image processing and segmentation algorithms have to cope with a very low signal-to-noise ratio (SNR). Within this report we present a study on the performance of a collection of denoising algorithms applied to a very noisy fossil dataset. The study shows that a non-local means (NLM) filter, in case it is properly configured, is able to remove a considerable amount of noise while preserving most of the structural information of interest. Based on the results of this study, we developed a software tool within ZIBAmira that denoises large tomographic datasets using an adaptive, GPU-accelerated NLM filter. With the help of our implementation a user can interactively configure the filter's parameters and thus its effectiveness with respect to the data of interest, while the filtering response is instantly visualized for a preselected region of interest (ROI). Our implementation efficiently denoises even large fossil datasets in a reasonable amount of time.}, language = {en} } @misc{KoberSaderZeilhoferetal., author = {Kober, Cornelia and Sader, Robert and Zeilhofer, Hans-Florian and Prohaska, Steffen and Zachow, Stefan and Deuflhard, Peter}, title = {Anisotrope Materialmodellierung f{\"u}r den menschlichen Unterkiefer}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6574}, number = {01-31}, abstract = {Im Rahmen der biomechanischen Simulation kn{\"o}cherner Organe ist die Frage nach einer befriedigenden Materialbeschreibung nach wie vor ungel{\"o}st. Computertomographische Datens{\"a}tze liefern eine r{\"a}umliche Verteilung der (R{\"o}ntgen-)Dichte und erm{\"o}glichen damit eine gute Darstellung der individuellen Geometrie. Weiter k{\"o}nnen die verschiedenen Materialbestandteile des Knochens, Spongiosa und Kortikalis, voneinander getrennt werden. Aber die richtungsab{\"a}ngige Information der Materialanisotropie ist verloren. In dieser Arbeit wird ein Ansatz f{\"u}r eine anisotrope Materialbeschreibung vorgestellt, die es erm{\"o}glicht, den Einfluss der individuellen kn{\"o}chernen Struktur auf das makroskopische Materialverhalten abzusch{\"a}tzen.}, language = {de} } @misc{JoachimskyAmbellanZachow, author = {Joachimsky, Robert and Ambellan, Felix and Zachow, Stefan}, title = {Computerassistierte Auswahl und Platzierung von interpositionalen Spacern zur Behandlung fr{\"u}her Gonarthrose}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66064}, abstract = {Degenerative Gelenkerkrankungen, wie die Osteoarthrose, sind ein h{\"a}ufiges Krankheitsbild unter {\"a}lteren Erwachsenen. Hierbei verringert sich u.a. der Gelenkspalt aufgrund degenerierten Knorpels oder gesch{\"a}digter Menisci. Ein in den Gelenkspalt eingebrachter interpositionaler Spacer soll die mit der Osteoarthrose einhergehende verringerte Gelenkkontaktfl{\"a}che erh{\"o}hen und so der teilweise oder vollst{\"a}ndige Gelenkersatz hinausgez{\"o}gert oder vermieden werden. In dieser Arbeit pr{\"a}sentieren wir eine Planungssoftware f{\"u}r die Auswahl und Positionierung eines interpositionalen Spacers am Patientenmodell. Auf einer MRT-basierten Bildsegmentierung aufbauend erfolgt eine geometrische Rekonstruktion der 3D-Anatomie des Kniegelenks. Anhand dieser wird der Gelenkspalt bestimmt, sowie ein Spacer ausgew{\"a}hlt und algorithmisch vorpositioniert. Die Positionierung des Spacers ist durch den Benutzer jederzeit interaktiv anpassbar. F{\"u}r jede Positionierung eines Spacers wird ein Fitness-Wert zur Knieanatomie des jeweiligen Patienten berechnet und den Nutzern R{\"u}ckmeldung hinsichtlich Passgenauigkeit gegeben. Die Software unterst{\"u}tzt somit als Entscheidungshilfe die behandelnden {\"A}rzte bei der patientenspezifischen Spacerauswahl.}, language = {de} } @misc{HoffmannSchultzSchellhornetal., author = {Hoffmann, Ren{\´e} and Schultz, Julia A. and Schellhorn, Rico and Rybacki, Erik and Keupp, Helmut and Lemanis, Robert and Zachow, Stefan}, title = {Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research}, issn = {1438-0064}, doi = {10.5194/bg-11-2721-2014}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-50300}, abstract = {Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied.}, language = {en} } @misc{HegeMerzkyZachow, author = {Hege, Hans-Christian and Merzky, Andre and Zachow, Stefan}, title = {Distributed Visualization with OpenGL Vizserver: Practical Experiences}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-5992}, number = {00-31}, abstract = {The increasing demand for distributed solutions in computing technology does not stop when it comes to visualization techniques. However, the capabilities of todays applications to perform remote rendering are limited by historical design legacys. Especially the popular X11 protokoll, which has been proven to be extremely flexible and usefull for remote 2D graphics applications, breaks down for the case of remote 3D rendering. In this white paper, we give a short overview of generic remote rendering technologies available today, and compare their performance to the recently released vizserver by SGI: a network extension to the SGI OpenGL rendering engines.}, language = {en} } @misc{GreweLeRouxPilzetal., author = {Grewe, Carl Martin and Le Roux, Gabriel and Pilz, Sven-Kristofer and Zachow, Stefan}, title = {Spotting the Details: The Various Facets of Facial Expressions}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-67696}, abstract = {3D Morphable Models (MM) are a popular tool for analysis and synthesis of facial expressions. They represent plausible variations in facial shape and appearance within a low-dimensional parameter space. Fitted to a face scan, the model's parameters compactly encode its expression patterns. This expression code can be used, for instance, as a feature in automatic facial expression recognition. For accurate classification, an MM that can adequately represent the various characteristic facets and variants of each expression is necessary. Currently available MMs are limited in the diversity of expression patterns. We present a novel high-quality Facial Expression Morphable Model built from a large-scale face database as a tool for expression analysis and synthesis. Establishment of accurate dense correspondence, up to finest skin features, enables a detailed statistical analysis of facial expressions. Various characteristic shape patterns are identified for each expression. The results of our analysis give rise to a new facial expression code. We demonstrate the advantages of such a code for the automatic recognition of expressions, and compare the accuracy of our classifier to state-of-the-art.}, language = {en} } @misc{EhlkeRammLameckeretal., author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Zachow, Stefan}, title = {Efficient projection and deformation of volumetric intensity models for accurate simulation of X-ray images}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16580}, abstract = {We present an efficient GPU-based method to generate virtual X-ray images from tetrahedral meshes which are associated with attenuation values. In addition, a novel approach is proposed that performs the model deformation on the GPU. The tetrahedral grids are derived from volumetric statistical shape and intensity models (SSIMs) and describe anatomical structures. Our research targets at reconstructing 3D anatomical shapes by comparing virtual X-ray images generated using our novel approach with clinical data while varying the shape and density of the SSIM in an optimization process. We assume that a deformed SSIM adequately represents an anatomy of interest when the similarity between the virtual and the clinical X-ray image is maximized. The OpenGL implementation presented here generates accurate (virtual) X-ray images at interactive rates, thus qualifying it for its use in the reconstruction process.}, language = {en} } @misc{EhlkeRammLameckeretal., author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Hege, Hans-Christian and Zachow, Stefan}, title = {Fast Generation of Virtual X-ray Images from Deformable Tetrahedral Meshes}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-41896}, abstract = {We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g.\ pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach contributes in orthopedic surgery, where 3D anatomy information needs to be extracted from 2D X-rays to support surgeons in better planning joint replacements.}, language = {en} } @misc{EhlkeHeylandMaerdianetal., author = {Ehlke, Moritz and Heyland, Mark and M{\"a}rdian, Sven and Duda, Georg and Zachow, Stefan}, title = {Assessing the Relative Positioning of an Osteosynthesis Plate to the Patient-Specific Femoral Shape from Plain 2D Radiographs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-54268}, abstract = {We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient­specific surface of the distal femur based on 2D X­ray images. Our goal is to study from clinical data, how the plate­to­bone distance affects bone healing. The patient­specific 3D shape of the femur is, however, seldom recorded for cases of femoral osteosynthesis since this typically requires Computed Tomography (CT), which comes at high cost and radiation dose. Our method instead utilizes two postoperative X­ray images to derive the femoral shape and thus can be applied on radiographs that are taken in clinical routine for follow­up. First, the implant geometry is used as a calibration object to relate the implant and the individual X­ray images spatially in a virtual X­ray setup. In a second step, the patient­specific femoral shape and pose are reconstructed in the virtual setup by fitting a deformable statistical shape and intensity model (SSIM) to the images. The relative positioning between femur and implant is then assessed in terms of displacement between the reconstructed 3D shape of the femur and the plate. A preliminary evaluation based on 4 cadaver datasets shows that the method derives the plate­to­bone distance with a mean absolute error of less than 1mm and a maximum error of 4.7 mm compared to ground truth from CT. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing.}, language = {en} } @misc{EhlkeHeylandMaerdianetal., author = {Ehlke, Moritz and Heyland, Mark and M{\"a}rdian, Sven and Duda, Georg and Zachow, Stefan}, title = {3D Assessment of Osteosynthesis based on 2D Radiographs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56217}, abstract = {We present a novel method to derive the surface distance of an osteosynthesis plate w.r.t. the patient-specific surface of the distal femur based on postoperative 2D radiographs. In a first step, the implant geometry is used as a calibration object to relate the implant and the individual X-ray images spatially in a virtual X-ray setup. Second, the patient-specific femoral shape and pose are reconstructed by fitting a deformable statistical shape and intensity model (SSIM) to the X-rays. The relative positioning between femur and implant is then assessed in terms of the displacement between the reconstructed 3D shape of the femur and the plate. We believe that the approach presented in this paper constitutes a meaningful tool to elucidate the effect of implant positioning on fracture healing and, ultimately, to derive load recommendations after surgery.}, language = {en} } @misc{EhlkeFrenzelRammetal., author = {Ehlke, Moritz and Frenzel, Thomas and Ramm, Heiko and Shandiz, Mohsen Akbari and Anglin, Carolyn and Zachow, Stefan}, title = {Towards Robust Measurement of Pelvic Parameters from AP Radiographs using Articulated 3D Models}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53707}, abstract = {Patient-specific parameters such as the orientation of the acetabulum or pelvic tilt are useful for custom planning for total hip arthroplasty (THA) and for evaluating the outcome of surgical interventions. The gold standard in obtaining pelvic parameters is from three-dimensional (3D) computed tomography (CT) imaging. However, this adds time and cost, exposes the patient to a substantial radiation dose, and does not allow for imaging under load (e.g. while the patient is standing). If pelvic parameters could be reliably derived from the standard anteroposterior (AP) radiograph, preoperative planning would be more widespread, and research analyses could be applied to retrospective data, after a postoperative issue is discovered. The goal of this work is to enable robust measurement of two surgical parameters of interest: the tilt of the anterior pelvic plane (APP) and the orientation of the natural acetabulum. We present a computer-aided reconstruction method to determine the APP and natural acetabular orientation from a single, preoperative X-ray. It can easily be extended to obtain other important preoperative and postoperative parameters solely based on a single AP radiograph.}, language = {en} } @misc{EhlkeFrenzelRammetal., author = {Ehlke, Moritz and Frenzel, Thomas and Ramm, Heiko and Lamecker, Hans and Akbari Shandiz, Mohsen and Anglin, Carolyn and Zachow, Stefan}, title = {Robust Measurement of Natural Acetabular Orientation from AP Radiographs using Articulated 3D Shape and Intensity Models}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49824}, language = {en} } @misc{DeuflhardDoesselLouisetal., author = {Deuflhard, Peter and D{\"o}ssel, Olaf and Louis, Alfred and Zachow, Stefan}, title = {Mehr Mathematik wagen in der Medizin}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10776}, number = {08-25}, abstract = {Der Artikel gibt einen Einblick in das reiche Feld der Zusammenarbeit zwischen Mathematik und Medizin. Beispielhaft werden drei Erfolgsmodelle dargestellt: Medizinische Bildgebung, mathematische Modellierung und Biosignalverarbeitung im Bereich der Dynamik des Herzens sowie mathematische Modellierung und Simulation in der Krebstherapie Hyperthermie und der Mund-Kiefer-Gesichts-Chirurgie. In allen F{\"a}llen existiert ein Gleichklang der Interessen von Medizin und Mathematik: Beide Disziplinen wollen die Resultate schnell und zuverl{\"a}ssig. F{\"u}r die Klinik heißt das, dass notwendige Rechnungen in m{\"o}glichst kurzer Zeit, und zwar auf dem PC, ablaufen m{\"u}ssen und dass die Resultate so genau und belastbar sein m{\"u}ssen, dass medizinische Entscheidungen darauf aufbauen k{\"o}nnen. F{\"u}r die Mathematik folgt daraus, dass h{\"o}chste Anforderungen an die Effizienz der verwendeten Algorithmen und die darauf aufbauende Software in Numerik und Visualisierung zu stellen sind. Jedes Kapitel endet mit einer Darstellung der Perspektive des jeweiligen Gebietes. Abschließend werden m{\"o}gliche Handlungsoptionen f{\"u}r Politik und Wirtschaft diskutiert.}, language = {de} } @misc{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {A Surface-Theoretic Approach for Statistical Shape Modeling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74497}, abstract = {We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.}, language = {en} } @misc{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {An as-invariant-as-possible GL+(3)-based Statistical Shape Model}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74566}, abstract = {We describe a novel nonlinear statistical shape model basedon differential coordinates viewed as elements of GL+(3). We adopt an as-invariant-as possible framework comprising a bi-invariant Lie group mean and a tangent principal component analysis based on a unique GL+(3)-left-invariant, O(3)-right-invariant metric. Contrary to earlier work that equips the coordinates with a specifically constructed group structure, our method employs the inherent geometric structure of the group-valued data and therefore features an improved statistical power in identifying shape differences. We demonstrate this in experiments on two anatomical datasets including comparison to the standard Euclidean as well as recent state-of-the-art nonlinear approaches to statistical shape modeling.}, language = {en} } @misc{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {Geodesic B-Score for Improved Assessment of Knee Osteoarthritis}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81930}, abstract = {Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions.}, language = {en} } @misc{AmbellanTackWilsonetal., author = {Ambellan, Felix and Tack, Alexander and Wilson, Dave and Anglin, Carolyn and Lamecker, Hans and Zachow, Stefan}, title = {Evaluating two methods for Geometry Reconstruction from Sparse Surgical Navigation Data}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66052}, abstract = {In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system. We validate the fitted models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the same patients. We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As part of the surgical protocol the patients' distal femurs were partially digitized. All patients had an MRI scan two months pre-operatively. The MRI data were manually segmented and the reconstructed bone surfaces used as ground truth against which the fit was compared. Two methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and (2) Gaussian Mixture Models (GMM). For both approaches, the difference between model fit and ground truth surface averaged less than 1.7 mm and excellent correspondence with the distal femoral morphology can be demonstrated.}, language = {en} } @misc{AmbellanTackEhlkeetal., author = {Ambellan, Felix and Tack, Alexander and Ehlke, Moritz and Zachow, Stefan}, title = {Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72704}, abstract = {We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging (MRI) that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs).The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures.The shape models and neural networks employed are trained using data from the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets from the SKI10 challenge.For the first time, an accuracy equivalent to the inter-observer variability of human readers is achieved in this challenge.Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We make the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation.In conclusion, combining localized classification via CNNs with statistical anatomical knowledge via SSMs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data.}, language = {en} } @misc{AmbellanLameckervonTycowiczetal., author = {Ambellan, Felix and Lamecker, Hans and von Tycowicz, Christoph and Zachow, Stefan}, title = {Statistical Shape Models - Understanding and Mastering Variation in Anatomy}, issn = {1438-0064}, doi = {10.1007/978-3-030-19385-0_5}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72699}, abstract = {In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring.}, language = {en} }