@article{LameckerZachowWittmersetal.2006, author = {Lamecker, Hans and Zachow, Stefan and Wittmers, Antonia and Weber, Britta and Hege, Hans-Christian and Elsholtz, Barbara and Stiller, Michael}, title = {Automatic segmentation of mandibles in low-dose CT-data}, volume = {1(1)}, journal = {Int. J. Computer Assisted Radiology and Surgery}, pages = {393 -- 395}, year = {2006}, language = {en} } @article{LameckerZachowHegeetal.2006, author = {Lamecker, Hans and Zachow, Stefan and Hege, Hans-Christian and Z{\"o}ckler, Maja}, title = {Surgical treatment of craniosynostosis based on a statistical 3D-shape model}, volume = {1(1)}, journal = {Int. J. Computer Assisted Radiology and Surgery}, doi = {10.1007/s11548-006-0024-x}, pages = {253 -- 254}, year = {2006}, language = {en} } @article{ZachowHegeDeuflhard2006, author = {Zachow, Stefan and Hege, Hans-Christian and Deuflhard, Peter}, title = {Computer assisted planning in cranio-maxillofacial surgery}, volume = {14(1)}, journal = {Journal of Computing and Information Technology}, pages = {53 -- 64}, year = {2006}, language = {en} } @article{ZachowLameckerElsholtzetal.2006, author = {Zachow, Stefan and Lamecker, Hans and Elsholtz, Barbara and Stiller, Michael}, title = {Is the course of the mandibular nerve deducible from the shape of the mandible?}, journal = {Int. J. of Computer Assisted Radiology and Surgery}, publisher = {Springer}, pages = {415 -- 417}, year = {2006}, language = {en} } @article{ZachowSteinmannHildebrandtetal.2006, author = {Zachow, Stefan and Steinmann, Alexander and Hildebrandt, Thomas and Weber, Rainer and Heppt, Werner}, title = {CFD simulation of nasal airflow: Towards treatment planning for functional rhinosurgery}, journal = {Int. J. of Computer Assisted Radiology and Surgery}, publisher = {Springer}, pages = {165 -- 167}, year = {2006}, language = {en} } @inproceedings{HierlWollnyZachowetal.2002, author = {Hierl, Thomas and Wollny, Gert and Zachow, Stefan and Kl{\"o}ppel, Rainer}, title = {Visualisierung von Knochen und Weichteilver{\"a}nderungen in der Distraktionsosteogenese des Mittelgesichtes}, booktitle = {Proc. 10. Jahrestagung der Deutschen Gesellschaft f{\"u}r Sch{\"a}delbasischirurgie}, address = {Heidelberg}, pages = {111 -- 116}, year = {2002}, language = {en} } @inproceedings{ZachowGladilinHegeetal.2000, author = {Zachow, Stefan and Gladilin, Evgeny and Hege, Hans-Christian and Deuflhard, Peter}, title = {Finite-Element Simulation of Soft Tissue Deformation}, booktitle = {Computer Assisted Radiology and Surgey (CARS)}, publisher = {Elsevier Science B.V.}, pages = {23 -- 28}, year = {2000}, language = {en} } @inproceedings{ZachowLuethStallingetal.1999, author = {Zachow, Stefan and Lueth, Tim and Stalling, Detlev and Hein, Andreas and Klein, Martin and Menneking, Horst}, title = {Optimized Arrangement of Osseointegrated Implants: A Surgical Planning System for the Fixation of Facial Protheses}, booktitle = {Computer Assisted Radiology and Surgery (CARS'99)}, publisher = {Elsevier Science B.V.}, pages = {942 -- 946}, year = {1999}, language = {en} } @inproceedings{HeinLuethZachowetal.1999, author = {Hein, Andreas and Lueth, Tim and Zachow, Stefan and Stien, Malte}, title = {A 2D Planning Sytem for Robot-Assisted Interventions}, booktitle = {Computer Assisted Radiology and Surgery}, publisher = {Elsevier Science B.V.}, pages = {1049}, year = {1999}, language = {en} } @inproceedings{StallingSeebassZachow1999, author = {Stalling, Detlev and Seebaß, Martin and Zachow, Stefan}, title = {Mehrschichtige Oberfl{\"a}chenmodelle zur computergest{\"u}tzten Planung in der Chirurgie}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 1999 - Algorithmen, Anwendungen}, publisher = {Springer-Verlag, Berlin}, pages = {203 -- 207}, year = {1999}, language = {en} } @phdthesis{Zachow2005, author = {Zachow, Stefan}, title = {Computer assisted osteotomy planning in cranio-maxillofacial surgery under consideration of facial soft tissue changes}, year = {2005}, language = {en} } @misc{EhlkeRammLameckeretal.2012, author = {Ehlke, Moritz and Ramm, Heiko and Lamecker, Hans and Zachow, Stefan}, title = {Efficient projection and deformation of volumetric intensity models for accurate simulation of X-ray images}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16580}, year = {2012}, abstract = {We present an efficient GPU-based method to generate virtual X-ray images from tetrahedral meshes which are associated with attenuation values. In addition, a novel approach is proposed that performs the model deformation on the GPU. The tetrahedral grids are derived from volumetric statistical shape and intensity models (SSIMs) and describe anatomical structures. Our research targets at reconstructing 3D anatomical shapes by comparing virtual X-ray images generated using our novel approach with clinical data while varying the shape and density of the SSIM in an optimization process. We assume that a deformed SSIM adequately represents an anatomy of interest when the similarity between the virtual and the clinical X-ray image is maximized. The OpenGL implementation presented here generates accurate (virtual) X-ray images at interactive rates, thus qualifying it for its use in the reconstruction process.}, language = {en} } @misc{RammMorilloVictoriaTodtetal.2013, author = {Ramm, Heiko and Morillo Victoria, Oscar Salvador and Todt, Ingo and Schirmacher, Hartmut and Ernst, Arneborg and Zachow, Stefan and Lamecker, Hans}, title = {Visual Support for Positioning Hearing Implants}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42495}, year = {2013}, abstract = {We present a software planning tool that provides intuitive visual feedback for finding suitable positions of hearing implants in the human temporal bone. After an automatic reconstruction of the temporal bone anatomy the tool pre-positions the implant and allows the user to adjust its position interactively with simple 2D dragging and rotation operations on the bone's surface. During this procedure, visual elements like warning labels on the implant or color encoded bone density information on the bone geometry provide guidance for the determination of a suitable fit.}, language = {en} } @misc{AmbellanLameckervonTycowiczetal.2019, author = {Ambellan, Felix and Lamecker, Hans and von Tycowicz, Christoph and Zachow, Stefan}, title = {Statistical Shape Models - Understanding and Mastering Variation in Anatomy}, issn = {1438-0064}, doi = {10.1007/978-3-030-19385-0_5}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72699}, year = {2019}, abstract = {In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring.}, language = {en} } @misc{AmbellanTackEhlkeetal.2019, author = {Ambellan, Felix and Tack, Alexander and Ehlke, Moritz and Zachow, Stefan}, title = {Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72704}, year = {2019}, abstract = {We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging (MRI) that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs).The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures.The shape models and neural networks employed are trained using data from the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets from the SKI10 challenge.For the first time, an accuracy equivalent to the inter-observer variability of human readers is achieved in this challenge.Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We make the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation.In conclusion, combining localized classification via CNNs with statistical anatomical knowledge via SSMs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data.}, language = {en} } @incollection{AmbellanLameckervonTycowiczetal.2019, author = {Ambellan, Felix and Lamecker, Hans and von Tycowicz, Christoph and Zachow, Stefan}, title = {Statistical Shape Models - Understanding and Mastering Variation in Anatomy}, volume = {3}, booktitle = {Biomedical Visualisation}, number = {1156}, editor = {Rea, Paul M.}, edition = {1}, publisher = {Springer Nature Switzerland AG}, isbn = {978-3-030-19384-3}, doi = {10.1007/978-3-030-19385-0_5}, pages = {67 -- 84}, year = {2019}, abstract = {In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression. Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated. We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) statistical shape models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods ormachine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring.}, language = {en} } @article{HildebrandtBrueningSchmidtetal.2019, author = {Hildebrandt, Thomas and Bruening, Jan Joris and Schmidt, Nora Laura and Lamecker, Hans and Heppt, Werner and Zachow, Stefan and Goubergrits, Leonid}, title = {The Healthy Nasal Cavity - Characteristics of Morphology and Related Airflow Based on a Statistical Shape Model Viewed from a Surgeon's Perspective}, volume = {35}, journal = {Facial Plastic Surgery}, number = {1}, doi = {10.1055/s-0039-1677721}, pages = {9 -- 13}, year = {2019}, abstract = {Functional surgery on the nasal framework requires referential criteria to objectively assess nasal breathing for indication and follow-up. Thismotivated us to generate amean geometry of the nasal cavity based on a statistical shape model. In this study, the authors could demonstrate that the introduced nasal cavity's mean geometry features characteristics of the inner shape and airflow, which are commonly observed in symptom-free subjects. Therefore, the mean geometry might serve as a reference-like model when one considers qualitative aspects. However, to facilitate quantitative considerations and statistical inference, further research is necessary. Additionally, the authorswere able to obtain details about the importance of the isthmus nasi and the inferior turbinate for the intranasal airstream.}, language = {en} } @article{HildebrandtBrueningLameckeretal.2019, author = {Hildebrandt, Thomas and Bruening, Jan Joris and Lamecker, Hans and Zachow, Stefan and Heppt, Werner and Schmidt, Nora and Goubergrits, Leonid}, title = {Digital Analysis of Nasal Airflow Facilitating Decision Support in Rhinosurgery}, volume = {35}, journal = {Facial Plastic Surgery}, number = {1}, doi = {10.1055/s-0039-1677720}, pages = {1 -- 8}, year = {2019}, abstract = {Successful functional surgery on the nasal framework requires reliable and comprehensive diagnosis. In this regard, the authors introduce a new methodology: Digital Analysis of Nasal Airflow (diANA). It is based on computational fluid dynamics, a statistical shape model of the healthy nasal cavity and rhinologic expertise. diANA necessitates an anonymized tomographic dataset of the paranasal sinuses including the complete nasal cavity and, when available, clinical information. The principle of diANA is to compare the morphology and the respective airflow of an individual nose with those of a reference. This enablesmorphometric aberrations and consecutive flow field anomalies to localize and quantify within a patient's nasal cavity. Finally, an elaborated expert opinion with instructive visualizations is provided. Using diANA might support surgeons in decision-making, avoiding unnecessary surgery, gaining more precision, and target-orientation for indicated operations.}, language = {en} } @inproceedings{TackZachow2019, author = {Tack, Alexander and Zachow, Stefan}, title = {Accurate Automated Volumetry of Cartilage of the Knee using Convolutional Neural Networks: Data from the Osteoarthritis Initiative}, booktitle = {IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)}, doi = {10.1109/ISBI.2019.8759201}, pages = {40 -- 43}, year = {2019}, abstract = {Volumetry of cartilage of the knee is needed for knee osteoarthritis (KOA) assessment. It is typically performed manually in a tedious and subjective process. We developed a method for an automated, segmentation-based quantification of cartilage volume by employing 3D Convolutional Neural Networks (CNNs). CNNs were trained in a supervised manner using magnetic resonance imaging data and cartilage volumetry readings performed by clinical experts for 1378 subjects provided by the Osteoarthritis Initiative. It was shown that 3D CNNs are able to achieve volume measures comparable to the magnitude of variation between expert readings and the real in vivo situation. In the future, accurate automated cartilage volumetry might support both, diagnosis of KOA as well as longitudinal analysis of KOA progression.}, language = {en} } @misc{AmbellanTackEhlkeetal.2019, author = {Ambellan, Felix and Tack, Alexander and Ehlke, Moritz and Zachow, Stefan}, title = {Automated Segmentation of Knee Bone and Cartilage combining Statistical Shape Knowledge and Convolutional Neural Networks: Data from the Osteoarthritis Initiative (Supplementary Material)}, volume = {52}, journal = {Medical Image Analysis}, number = {2}, doi = {10.12752/4.ATEZ.1.0}, pages = {109 -- 118}, year = {2019}, abstract = {We present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained using data of the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively. We evaluate our method on 40 validation and 50 submission datasets of the SKI10 challenge. For the first time, an accuracy equivalent to the inter-observer variability of human readers has been achieved in this challenge. Moreover, the quality of the proposed method is thoroughly assessed using various measures for data from the OAI, i.e. 507 manual segmentations of bone and cartilage, and 88 additional manual segmentations of cartilage. Our method yields sub-voxel accuracy for both OAI datasets. We made the 507 manual segmentations as well as our experimental setup publicly available to further aid research in the field of medical image segmentation. In conclusion, combining statistical anatomical knowledge via SSMs with the localized classification via CNNs results in a state-of-the-art segmentation method for knee bones and cartilage from MRI data.}, language = {en} }