@inproceedings{SeimKainmuellerLameckeretal.2009, author = {Seim, Heiko and Kainm{\"u}ller, Dagmar and Lamecker, Hans and Zachow, Stefan}, title = {A System for Unsupervised Extraction of Orthopaedic Parameters from CT Data}, series = {GI Workshop Softwareassistenten - Computerunterst{\"u}tzung f{\"u}r die medizinische Diagnose und Therapieplanung}, booktitle = {GI Workshop Softwareassistenten - Computerunterst{\"u}tzung f{\"u}r die medizinische Diagnose und Therapieplanung}, address = {L{\"u}beck, Germany}, pages = {1328 -- 1337}, year = {2009}, language = {en} } @misc{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {A Surface-Theoretic Approach for Statistical Shape Modeling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74497}, abstract = {We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.}, language = {en} } @inproceedings{AmbellanZachowvonTycowicz, author = {Ambellan, Felix and Zachow, Stefan and von Tycowicz, Christoph}, title = {A Surface-Theoretic Approach for Statistical Shape Modeling}, series = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), Part IV}, volume = {11767}, booktitle = {Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), Part IV}, publisher = {Springer}, doi = {10.1007/978-3-030-32251-9_3}, pages = {21 -- 29}, abstract = {We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing natural biological shape variability, we carry out an analysis of specificity and generalization ability.}, language = {en} } @misc{TycowiczAmbellanMukhopadhyayetal., author = {Tycowicz, Christoph von and Ambellan, Felix and Mukhopadhyay, Anirban and Zachow, Stefan}, title = {A Riemannian Statistical Shape Model using Differential Coordinates}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61175}, abstract = {We propose a novel Riemannian framework for statistical analysis of shapes that is able to account for the nonlinearity in shape variation. By adopting a physical perspective, we introduce a differential representation that puts the local geometric variability into focus. We model these differential coordinates as elements of a Lie group thereby endowing our shape space with a non-Euclidian structure. A key advantage of our framework is that statistics in a manifold shape space become numerically tractable improving performance by several orders of magnitude over state-of-the-art. We show that our Riemannian model is well suited for the identification of intra-population variability as well as inter-population differences. In particular, we demonstrate the superiority of the proposed model in experiments on specificity and generalization ability. We further derive a statistical shape descriptor that outperforms the standard Euclidian approach in terms of shape-based classification of morphological disorders.}, language = {en} } @inproceedings{ZachowHierlErdmann2004, author = {Zachow, Stefan and Hierl, Thomas and Erdmann, Bodo}, title = {A quantitative evaluation of 3D soft tissue prediction in maxillofacial surgery planning}, series = {Proc. 3. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboter-assistierte Chirurgie e.V.}, booktitle = {Proc. 3. Jahrestagung der Deutschen Gesellschaft f{\"u}r Computer- und Roboter-assistierte Chirurgie e.V.}, address = {M{\"u}nchen}, year = {2004}, language = {en} } @article{PichtLeCalveTomaselloetal., author = {Picht, Thomas and Le Calve, Maxime and Tomasello, Rosario and Fekonja, Lucius and Gholami, Mohammad Fardin and Bruhn, Matthias and Zwick, Carola and Rabe, J{\"u}rgen P. and M{\"u}ller-Birn, Claudia and Vajkoczy, Peter and Sauer, Igor M. and Zachow, Stefan and Nyakatura, John A. and Ribault, Patricia and Pulverm{\"u}ller, Friedemann}, title = {A note on neurosurgical resection and why we need to rethink cutting}, series = {Neurosurgery}, volume = {89}, journal = {Neurosurgery}, number = {5}, doi = {10.1093/neuros/nyab326}, pages = {289 -- 291}, language = {en} } @inproceedings{GladilinZachowDeuflhardetal.2002, author = {Gladilin, Evgeny and Zachow, Stefan and Deuflhard, Peter and Hege, Hans-Christian}, title = {A nonlinear soft tissue model for craniofacial surgery simulations}, series = {Proc. of Modeling and Simulation for Computer-aided Medicine and Surgery (MS4CMS}, booktitle = {Proc. of Modeling and Simulation for Computer-aided Medicine and Surgery (MS4CMS}, publisher = {INRIA}, address = {Paris, France}, year = {2002}, language = {en} } @article{GladilinZachowDeuflhardetal.2002, author = {Gladilin, Evgeny and Zachow, Stefan and Deuflhard, Peter and Hege, Hans-Christian}, title = {A nonlinear elastic soft tissue model for craniofacial surgery simulations}, series = {ESAIM, Proc.}, volume = {12}, journal = {ESAIM, Proc.}, doi = {10.1051/proc:2002011}, pages = {61 -- 66}, year = {2002}, language = {en} } @article{LemanisZachowFusseisetal., author = {Lemanis, Robert and Zachow, Stefan and Fusseis, Florian and Hoffmann, Ren{\´e}}, title = {A new approach using high-resolution computed tomography to test the buoyant properties of chambered cephalopod shells}, series = {Paleobiology}, volume = {41}, journal = {Paleobiology}, number = {2}, publisher = {Cambridge University Press}, address = {Cambridge}, doi = {10.1017/pab.2014.17}, pages = {313 -- 329}, abstract = {The chambered shell of modern cephalopods functions as a buoyancy apparatus, allowing the animal to enter the water column without expending a large amount of energy to overcome its own weight. Indeed, the chambered shell is largely considered a key adaptation that allowed the earliest cephalopods to leave the ocean floor and enter the water column. It has been argued by some, however, that the iconic chambered shell of Paleozoic and Mesozoic ammonoids did not provide a sufficiently buoyant force to compensate for the weight of the entire animal, thus restricting ammonoids to a largely benthic lifestyle reminiscent of some octopods. Here we develop a technique using high-resolution computed tomography to quantify the buoyant properties of chambered shells without reducing the shell to ideal spirals or eliminating inherent biological variability by using mathematical models that characterize past work in this area. This technique has been tested on Nautilus pompilius and is now extended to the extant deep-sea squid Spirula spirula and the Jurassic ammonite Cadoceras sp. hatchling. Cadoceras is found to have possessed near-neutral to positive buoyancy if hatched when the shell possessed between three and five chambers. However, we show that the animal could also overcome degrees of negative buoyancy through swimming, similar to the paralarvae of modern squids. These calculations challenge past inferences of benthic life habits based solely on calculations of negative buoyancy. The calculated buoyancy of Cadoceras supports the possibility of planktonic dispersal of ammonite hatchlings. This information is essential to understanding ammonoid ecology as well as biotic interactions and has implications for the interpretation of geochemical data gained from the isotopic analysis of the shell.}, language = {en} } @article{LameckerKamerWittmersetal.2007, author = {Lamecker, Hans and Kamer, Lukas and Wittmers, Antonia and Zachow, Stefan and Kaup, Thomas and Schramm, Alexander and Noser, Hansrudi and Hammer, Beat}, title = {A method for the three-dimensional statistical shape analysis of the bony orbit}, series = {Proc. Computer Aided Surgery around the Head}, journal = {Proc. Computer Aided Surgery around the Head}, pages = {94 -- 97}, year = {2007}, language = {en} }