@inproceedings{ZachowHierlErdmann2004, author = {Zachow, Stefan and Hierl, Thomas and Erdmann, Bodo}, title = {{\"U}ber die Genauigkeit einer 3D Weichgewebepr{\"a}diktion in der MKG-Cirurgie}, series = {Workshop 'Bildverarbeitung f{\"u}r die Medizin' (BVM)}, booktitle = {Workshop 'Bildverarbeitung f{\"u}r die Medizin' (BVM)}, address = {Berlin, Germany}, pages = {75 -- 79}, year = {2004}, language = {en} } @inproceedings{SiqueiraRodriguesRiehmZachowetal., author = {Siqueira Rodrigues, Lucas and Riehm, Felix and Zachow, Stefan and Israel, Johann Habakuk}, title = {VoxSculpt: An Open-Source Voxel Library for Tomographic Volume Sculpting in Virtual Reality}, series = {2023 9th International Conference on Virtual Reality (ICVR), Xianyang, China, 2023}, booktitle = {2023 9th International Conference on Virtual Reality (ICVR), Xianyang, China, 2023}, doi = {10.1109/ICVR57957.2023.10169420}, pages = {515 -- 523}, abstract = {Manual processing of tomographic data volumes, such as interactive image segmentation in medicine or paleontology, is considered a time-consuming and cumbersome endeavor. Immersive volume sculpting stands as a potential solution to improve its efficiency and intuitiveness. However, current open-source software solutions do not yield the required performance and functionalities. We address this issue by contributing a novel open-source game engine voxel library that supports real-time immersive volume sculpting. Our design leverages GPU instancing, parallel computing, and a chunk-based data structure to optimize collision detection and rendering. We have implemented features that enable fast voxel interaction and improve precision. Our benchmark evaluation indicates that our implementation offers a significant improvement over the state-of-the-art and can render and modify millions of visible voxels while maintaining stable performance for real-time interaction in virtual reality.}, language = {en} } @inproceedings{HierlWollnyZachowetal.2002, author = {Hierl, Thomas and Wollny, Gert and Zachow, Stefan and Kl{\"o}ppel, Rainer}, title = {Visualisierung von Knochen und Weichteilver{\"a}nderungen in der Distraktionsosteogenese des Mittelgesichtes}, series = {Proc. 10. Jahrestagung der Deutschen Gesellschaft f{\"u}r Sch{\"a}delbasischirurgie}, booktitle = {Proc. 10. Jahrestagung der Deutschen Gesellschaft f{\"u}r Sch{\"a}delbasischirurgie}, address = {Heidelberg}, pages = {111 -- 116}, year = {2002}, language = {en} } @inproceedings{RammVictoriaMorilloTodtetal.2013, author = {Ramm, Heiko and Victoria Morillo, Oscar Salvador and Todt, Ingo and Schirmacher, Hartmut and Ernst, Arneborg and Zachow, Stefan and Lamecker, Hans}, title = {Visual Support for Positioning Hearing Implants}, series = {Proceedings of the 12th annual meeting of the CURAC society}, booktitle = {Proceedings of the 12th annual meeting of the CURAC society}, editor = {Freysinger, Wolfgang}, pages = {116 -- 120}, year = {2013}, language = {en} } @misc{RammMorilloVictoriaTodtetal., author = {Ramm, Heiko and Morillo Victoria, Oscar Salvador and Todt, Ingo and Schirmacher, Hartmut and Ernst, Arneborg and Zachow, Stefan and Lamecker, Hans}, title = {Visual Support for Positioning Hearing Implants}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42495}, abstract = {We present a software planning tool that provides intuitive visual feedback for finding suitable positions of hearing implants in the human temporal bone. After an automatic reconstruction of the temporal bone anatomy the tool pre-positions the implant and allows the user to adjust its position interactively with simple 2D dragging and rotation operations on the bone's surface. During this procedure, visual elements like warning labels on the implant or color encoded bone density information on the bone geometry provide guidance for the determination of a suitable fit.}, language = {en} } @article{ZachowMuiggHildebrandtetal.2009, author = {Zachow, Stefan and Muigg, Philipp and Hildebrandt, Thomas and Doleisch, Helmut and Hege, Hans-Christian}, title = {Visual Exploration of Nasal Airflow}, series = {IEEE Transactions on Visualization and Computer Graphics}, volume = {15}, journal = {IEEE Transactions on Visualization and Computer Graphics}, number = {8}, doi = {10.1109/TVCG.2009.198}, pages = {1407 -- 1414}, year = {2009}, language = {en} } @inproceedings{GladilinZachowDeuflhardetal.2001, author = {Gladilin, Evgeny and Zachow, Stefan and Deuflhard, Peter and Hege, Hans-Christian}, title = {Virtual Fibers: A Robust Approach for Muscle Simulation}, series = {IX Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON)}, booktitle = {IX Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON)}, address = {Pula, Croatia}, pages = {961 -- 964}, year = {2001}, language = {en} } @article{SekuboyinaHusseiniBayatetal., author = {Sekuboyina, Anjany and Husseini, Malek E. and Bayat, Amirhossein and L{\"o}ffler, Maximilian and Liebl, Hans and Li, Hongwei and Tetteh, Giles and Kukačka, Jan and Payer, Christian and Štern, Darko and Urschler, Martin and Chen, Maodong and Cheng, Dalong and Lessmann, Nikolas and Hu, Yujin and Wang, Tianfu and Yang, Dong and Xu, Daguang and Ambellan, Felix and Amiranashvili, Tamaz and Ehlke, Moritz and Lamecker, Hans and Lehnert, Sebastian and Lirio, Marilia and de Olaguer, Nicol{\´a}s P{\´e}rez and Ramm, Heiko and Sahu, Manish and Tack, Alexander and Zachow, Stefan and Jiang, Tao and Ma, Xinjun and Angerman, Christoph and Wang, Xin and Brown, Kevin and Kirszenberg, Alexandre and Puybareau, {\´E}lodie and Chen, Di and Bai, Yiwei and Rapazzo, Brandon H. and Yeah, Timyoas and Zhang, Amber and Xu, Shangliang and Hou, Feng and He, Zhiqiang and Zeng, Chan and Xiangshang, Zheng and Liming, Xu and Netherton, Tucker J. and Mumme, Raymond P. and Court, Laurence E. and Huang, Zixun and He, Chenhang and Wang, Li-Wen and Ling, Sai Ho and Huynh, L{\^e} Duy and Boutry, Nicolas and Jakubicek, Roman and Chmelik, Jiri and Mulay, Supriti and Sivaprakasam, Mohanasankar and Paetzold, Johannes C. and Shit, Suprosanna and Ezhov, Ivan and Wiestler, Benedikt and Glocker, Ben and Valentinitsch, Alexander and Rempfler, Markus and Menze, Bj{\"o}rn H. and Kirschke, Jan S.}, title = {VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images}, series = {Medical Image Analysis}, volume = {73}, journal = {Medical Image Analysis}, doi = {10.1016/j.media.2021.102166}, abstract = {Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.}, language = {en} } @article{SekuboyinaBayatHusseinietal., author = {Sekuboyina, Anjany and Bayat, Amirhossein and Husseini, Malek E. and L{\"o}ffler, Maximilian and Li, Hongwei and Tetteh, Giles and Kukačka, Jan and Payer, Christian and Štern, Darko and Urschler, Martin and Chen, Maodong and Cheng, Dalong and Lessmann, Nikolas and Hu, Yujin and Wang, Tianfu and Yang, Dong and Xu, Daguang and Ambellan, Felix and Amiranashvili, Tamaz and Ehlke, Moritz and Lamecker, Hans and Lehnert, Sebastian and Lirio, Marilia and de Olaguer, Nicol{\´a}s P{\´e}rez and Ramm, Heiko and Sahu, Manish and Tack, Alexander and Zachow, Stefan and Jiang, Tao and Ma, Xinjun and Angerman, Christoph and Wang, Xin and Wei, Qingyue and Brown, Kevin and Wolf, Matthias and Kirszenberg, Alexandre and Puybareau, {\´E}lodie and Valentinitsch, Alexander and Rempfler, Markus and Menze, Bj{\"o}rn H. and Kirschke, Jan S.}, title = {VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images}, series = {arXiv}, journal = {arXiv}, language = {en} } @inproceedings{GladilinZachowDeuflhardetal.2001, author = {Gladilin, Evgeny and Zachow, Stefan and Deuflhard, Peter and Hege, Hans-Christian}, title = {Validierung eines linear elastischen Modells f{\"u}r die Weichgewebesimulation in der Mund-Kiefer-Gesichtschirurgie}, series = {Bildverarbeitung f{\"u}r die Medizin (BVM)}, booktitle = {Bildverarbeitung f{\"u}r die Medizin (BVM)}, address = {L{\"u}beck, Germany}, pages = {57 -- 61}, year = {2001}, language = {en} }