@misc{ArnoldBertholdHeinzetal., author = {Arnold, Thomas and Berthold, Timo and Heinz, Stefan and Vigerske, Stefan and Henrion, Ren{\´e} and Gr{\"o}tschel, Martin and Koch, Thorsten and Tischendorf, Caren and R{\"o}misch, Werner}, title = {A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs}, series = {MATHEON - Mathematics for Key Technologies}, volume = {1}, journal = {MATHEON - Mathematics for Key Technologies}, editor = {Deuflhard, Peter and Gr{\"o}tschel, Martin and H{\"o}mberg, Dietmar and Horst, Ulrich and Kramer, J{\"u}rg and Mehrmann, Volker and Polthier, Konrad and Schmidt, Frank and Sch{\"u}tte, Christof and Skutella, Martin and Sprekels, J{\"u}rgen}, publisher = {European Mathematical Society}, doi = {10.4171/137}, pages = {135 -- 146}, abstract = {Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de}, language = {en} } @misc{ArnoldBertholdHeinzetal., author = {Arnold, Thomas and Berthold, Timo and Heinz, Stefan and Vigerske, Stefan and Henrion, Ren{\´e} and Gr{\"o}tschel, Martin and Koch, Thorsten and Tischendorf, Caren and R{\"o}misch, Werner}, title = {A Jack of all Trades? Solving stochastic mixed-integer nonlinear constraint programs}, issn = {1438-0064}, doi = {10.4171/137}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-49947}, abstract = {Natural gas is one of the most important energy sources in Germany and Europe. In recent years, political regulations have led to a strict separation of gas trading and gas transport, thereby assigning a central role in energy politics to the transportation and distribution of gas. These newly imposed political requirements influenced the technical processes of gas transport in such a way that the complex task of planning and operating gas networks has become even more intricate. Mathematically, the combination of discrete decisions on the configuration of a gas transport network, the nonlinear equations describing the physics of gas, and the uncertainty in demand and supply yield large-scale and highly complex stochastic mixed-integer nonlinear optimization problems. The Matheon project "Optimization of Gas Transport" takes the key role of making available the necessary core technology to solve the mathematical optimization problems which model the topology planning and the operation of gas networks. An important aspect of the academic impact is the free availability of our framework. As a result of several years of research and development, it is now possible to download a complete state-of-the-art framework for mixed-integer linear and nonlinear programming in source code at http://scip.zib.de}, language = {en} } @misc{BleyGleixnerKochetal., author = {Bley, Andreas and Gleixner, Ambros and Koch, Thorsten and Vigerske, Stefan}, title = {Comparing MIQCP solvers to a specialised algorithm for mine production scheduling}, organization = {ZIB}, issn = {1438-0064}, doi = {10.1007/978-3-642-25707-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11507}, number = {09-32}, abstract = {In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm.}, language = {en} } @misc{AchterbergBertholdHeinzetal., author = {Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Wolter, Kati}, title = {Constraint Integer Programming: Techniques and Applications}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10950}, number = {08-43}, abstract = {This article introduces constraint integer programming (CIP), which is a novel way to combine constraint programming (CP) and mixed integer programming (MIP) methodologies. CIP is a generalization of MIP that supports the notion of general constraints as in CP. This approach is supported by the CIP framework SCIP, which also integrates techniques for solving satisfiability problems. SCIP is available in source code and free for noncommercial use. We demonstrate the usefulness of CIP on three tasks. First, we apply the constraint integer programming approach to pure mixed integer programs. Computational experiments show that SCIP is almost competitive to current state-of-the-art commercial MIP solvers. Second, we demonstrate how to use CIP techniques to compute the number of optimal solutions of integer programs. Third, we employ the CIP framework to solve chip design verification problems, which involve some highly nonlinear constraint types that are very hard to handle by pure MIP solvers. The CIP approach is very effective here: it can apply the full sophisticated MIP machinery to the linear part of the problem, while dealing with the nonlinear constraints by employing constraint programming techniques.}, language = {en} } @misc{AchterbergHeinzKoch, author = {Achterberg, Tobias and Heinz, Stefan and Koch, Thorsten}, title = {Counting solutions of integer programs using unrestricted subtree detection}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-10632}, number = {08-09}, abstract = {In the recent years there has been tremendous progress in the development of algorithms to find optimal solutions for integer programs. In many applications it is, however, desirable (or even necessary) to generate all feasible solutions. Examples arise in the areas of hardware and software verification and discrete geometry. In this paper, we investigate how to extend branch-and-cut integer programming frameworks to support the generation of all solutions. We propose a method to detect so-called unrestricted subtrees, which allows us to prune the integer program search tree and to collect several solutions simultaneously. We present computational results of this branch-and-count paradigm which show the potential of the unrestricted subtree detection.}, language = {en} } @misc{KochMartinVoss, author = {Koch, Thorsten and Martin, Alexander and Voß, Stefan}, title = {SteinLib: An Updated Library on Steiner Tree Problems in Graphs}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-6056}, number = {00-37}, abstract = {In this paper we present the {\em SteinLib}, a library of data sets for the Steiner tree problem in graphs. This library extends former libraries on Steiner tree problems by many new interesting and difficult instances, most of them arising from real-world applications. We give a survey on the difficulty of these problem instances by giving references to state-of-the-art software packages that were the first or are currently among the best to solve these instances.}, language = {en} } @misc{KochAchterbergAndersenetal.2010, author = {Koch, Thorsten and Achterberg, Tobias and Andersen, Erling and Bastert, Oliver and Berthold, Timo and Bixby, Robert E. and Danna, Emilie and Gamrath, Gerald and Gleixner, Ambros and Heinz, Stefan and Lodi, Andrea and Mittelmann, Hans and Ralphs, Ted and Salvagnin, Domenico and Steffy, Daniel and Wolter, Kati}, title = {MIPLIB 2010}, doi = {10.1007/s12532-011-0025-9}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12953}, number = {10-31}, year = {2010}, abstract = {This paper reports on the fifth version of the Mixed Integer Programming Library. The MIPLIB 2010 is the first MIPLIB release that has been assembled by a large group from academia and from industry, all of whom work in integer programming. There was mutual consent that the concept of the library had to be expanded in order to fulfill the needs of the community. The new version comprises 361 instances sorted into several groups. This includes the main benchmark test set of 87 instances, which are all solvable by today's codes, and also the challenge test set with 164 instances, many of which are currently unsolved. For the first time, we include scripts to run automated tests in a predefined way. Further, there is a solution checker to test the accuracy of provided solutions using exact arithmetic.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten}, title = {ParaSCIP - a parallel extension of SCIP}, doi = {10.1007/978-3-642-24025-6_12}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11921}, number = {10-27}, abstract = {Mixed integer programming (MIP) has become one of the most important techniques in Operations Research and Discrete Optimization. SCIP (Solving Constraint Integer Programs) is currently one of the fastest non-commercial MIP solvers. It is based on the branch-and-bound procedure in which the problem is recursively split into smaller subproblems, thereby creating a so-called branching tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization on a distributed memory computing environment. ParaSCIP uses SCIP solvers as independently running processes to solve subproblems (nodes of the branching tree) locally. This makes the parallelization development independent of the SCIP development. Thus, ParaSCIP directly profits from any algorithmic progress in future versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve two previously unsolved instances from MIPLIB2003, a standard test set library for MIP solvers. For these computations, we used up to 2048 cores of the HLRN~II supercomputer.}, language = {en} } @article{PfetschFuegenschuhGeissleretal., author = {Pfetsch, Marc and F{\"u}genschuh, Armin and Geißler, Bj{\"o}rn and Geißler, Nina and Gollmer, Ralf and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Martin, Alexander and Morsi, Antonio and R{\"o}vekamp, Jessica and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Stangl, Claudia and Steinbach, Marc and Vigerske, Stefan and Willert, Bernhard}, title = {Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions}, series = {Optimization Methods and Software}, journal = {Optimization Methods and Software}, publisher = {Taylor \& Francis}, doi = {10.1080/10556788.2014.888426}, abstract = {In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements such that there exists a network state meeting all physical, technical, and legal constraints. We describe a two-stage approach to solve the resulting complex and numerically difficult feasibility problem. The first phase consists of four distinct algorithms applying linear, and methods for complementarity constraints to compute possible settings for the discrete decisions. The second phase employs a precise continuous programming model of the gas network. Using this setup, we are able to compute high quality solutions to real-world industrial instances that are significantly larger than networks that have appeared in the mathematical programming literature before.}, language = {en} } @inproceedings{BleyGleixnerKochetal.2012, author = {Bley, Andreas and Gleixner, Ambros and Koch, Thorsten and Vigerske, Stefan}, title = {Comparing MIQCP Solvers to a Specialised Algorithm for Mine Production Scheduling}, series = {Modeling, Simulation and Optimization of Complex Processes. Proceedings of the Fourth International Conference on High Performance Scientific Computing, March 2-6, 2009, Hanoi, Vietnam}, booktitle = {Modeling, Simulation and Optimization of Complex Processes. Proceedings of the Fourth International Conference on High Performance Scientific Computing, March 2-6, 2009, Hanoi, Vietnam}, doi = {10.1007/978-3-642-25707-0_3}, pages = {25 -- 39}, year = {2012}, abstract = {In this paper we investigate the performance of several out-of-the box solvers for mixed-integer quadratically constrained programmes (MIQCPs) on an open pit mine production scheduling problem with mixing constraints. We compare the solvers BARON, Couenne, SBB, and SCIP to a problem-specific algorithm on two different MIQCP formulations. The computational results presented show that general-purpose solvers with no particular knowledge of problem structure are able to nearly match the performance of a hand-crafted algorithm.}, language = {en} }