@misc{SchuetteKlusHartmann, author = {Sch{\"u}tte, Christof and Klus, Stefan and Hartmann, Carsten}, title = {Overcoming the Timescale Barrier in Molecular Dynamics: Transfer Operators, Variational Principles, and Machine Learning}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88637}, abstract = {One of the main challenges in molecular dynamics is overcoming the "timescale barrier", a phrase used to describe that in many realistic molecular systems, biologically important rare transitions occur on timescales that are not accessible to direct numerical simulation, not even on the largest or specifically dedicated supercomputers. This article discusses how to circumvent the timescale barrier by a collection of transfer operator-based techniques that have emerged from dynamical systems theory, numerical mathematics, and machine learning over the last two decades. We will focus on how transfer operators can be used to approximate the dynamical behavior on long timescales, review the introduction of this approach into molecular dynamics, and outline the respective theory as well as the algorithmic development from the early numerics-based methods, via variational reformulations, to modern data-based techniques utilizing and improving concepts from machine learning. Furthermore, its relation to rare event simulation techniques will be explained, revealing a broad equivalence of variational principles for long-time quantities in MD. The article will mainly take a mathematical perspective and will leave the application to real-world molecular systems to the more than 1000 research articles already written on this subject.}, language = {en} } @misc{BittracherKoltaiKlusetal., author = {Bittracher, Andreas and Koltai, P{\´e}ter and Klus, Stefan and Banisch, Ralf and Dellnitz, Michael and Sch{\"u}tte, Christof}, title = {Transition manifolds of complex metastable systems: Theory and data-driven computation of effective dynamics}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63822}, abstract = {We consider complex dynamical systems showing metastable behavior but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.}, language = {en} }