@incollection{GamrathBertholdHeinzetal.2015, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-Based Primal Heuristics for Mixed Integer Programming}, volume = {13}, booktitle = {Optimization in the Real World}, publisher = {Springer Japan}, isbn = {978-4-431-55419-6}, doi = {10.1007/978-4-431-55420-2_3}, pages = {37 -- 53}, year = {2015}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time.}, language = {en} } @inproceedings{ShinanoAchterbergBertholdetal.2014, author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Hard MIPLIP2003 Problems with ParaSCIP on Supercomputers: An Update}, booktitle = {IPDPSW'14 Proceedings of the 2014 IEEE, International Parallel \& Distributed Processing Symposium Workshops}, editor = {IEEE,}, publisher = {IEEE Computer Society}, address = {Washington, DC, USA}, isbn = {978-1-4799-4117-9}, doi = {10.1109/IPDPSW.2014.174}, pages = {1552 -- 1561}, year = {2014}, language = {en} } @misc{ShinanoAchterbergBertholdetal.2015, author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, issn = {1438-0064}, doi = {10.1109/IPDPS.2016.56}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56404}, year = {2015}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @inproceedings{BertholdHeinzLuebbeckeetal.2010, author = {Berthold, Timo and Heinz, Stefan and L{\"u}bbecke, Marco and M{\"o}hring, Rolf and Schulz, Jens}, title = {A Constraint Integer Programming Approach for Resource-Constrained Project Scheduling}, volume = {6140}, booktitle = {Proc. of CPAIOR 2010}, editor = {Lodi, Andrea and Milano, Michela and Toth, Paolo}, publisher = {Springer}, pages = {313 -- 317}, year = {2010}, language = {en} } @inproceedings{BertholdHeinzPfetsch2009, author = {Berthold, Timo and Heinz, Stefan and Pfetsch, Marc}, title = {Nonlinear pseudo-Boolean optimization}, volume = {5584}, booktitle = {Theory and Applications of Satisfiability Testing - SAT 2009}, editor = {Kullmann, Oliver}, publisher = {Springer}, pages = {441 -- 446}, year = {2009}, language = {en} } @inproceedings{WitzigBertholdHeinz2017, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Experiments with Conflict Analysis in Mixed Integer Programming}, volume = {10335}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2017}, publisher = {Springer}, doi = {10.1007/978-3-319-59776-8_17}, pages = {211 -- 222}, year = {2017}, abstract = {The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.}, language = {en} } @inproceedings{KraemerHerrmannBoethetal.2015, author = {Kr{\"a}mer, Martin and Herrmann, Karl-Heinz and Boeth, Heide and Tycowicz, Christoph von and K{\"o}nig, Christian and Zachow, Stefan and Ehrig, Rainald and Hege, Hans-Christian and Duda, Georg and Reichenbach, J{\"u}rgen}, title = {Measuring 3D knee dynamics using center out radial ultra-short echo time trajectories with a low cost experimental setup}, booktitle = {ISMRM (International Society for Magnetic Resonance in Medicine), 23rd Annual Meeting 2015, Toronto, Canada}, year = {2015}, language = {en} } @misc{GamrathBertholdHeinzetal.2015, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-based primal heuristics for mixed integer programming}, issn = {1438-0064}, doi = {http://dx.doi.org/10.1007/978-4-431-55420-2_3}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55518}, year = {2015}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They help to reach optimality faster and provide good feasible solutions early in the solving process. In this paper, we present two new primal heuristics which take into account global structures available within MIP solvers to construct feasible solutions at the beginning of the solving process. These heuristics follow a large neighborhood search (LNS) approach and use global structures to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. The definition of the neighborhood is done by iteratively fixing variables and propagating these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. The neighborhood is solved as a sub-MIP and solutions are transferred back to the original problem. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about every third instance and therewith help to improve the average solving time.}, language = {en} } @misc{WitzigBertholdHeinz2019, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Computational Aspects of Infeasibility Analysis in Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74962}, year = {2019}, abstract = {The analysis of infeasible subproblems plays an important role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications, obtained by domain propagation, that led to infeasibility. The result of this analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept is called conflict graph analysis and has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. Every ray of the dual LP provides a set of multipliers that can be used to generate a single new globally valid linear constraint. This method is called dual proof analysis. The main contribution of this paper is twofold. Firstly, we present three enhancements of dual proof analysis: presolving via variable cancellation, strengthening by applying mixed integer rounding functions, and a filtering mechanism. Further, we provide an intense computational study evaluating the impact of every presented component regarding dual proof analysis. Secondly, this paper presents the first integrated approach to use both conflict graph and dual proof analysis simultaneously within a single MIP solution process. All experiments are carried out on general MIP instances from the standard public test set MIPLIB 2017; the presented algorithms have been implemented within the non-commercial MIP solver SCIP and the commercial MIP solver FICO Xpress.}, language = {en} } @article{ShinanoBertholdHeinz2018, author = {Shinano, Yuji and Berthold, Timo and Heinz, Stefan}, title = {ParaXpress: An Experimental Extension of the FICO Xpress-Optimizer to Solve Hard MIPs on Supercomputers}, volume = {33}, journal = {Optimization Methods \& Software}, number = {3}, doi = {10.1080/10556788.2018.1428602}, pages = {530 -- 539}, year = {2018}, abstract = {The Ubiquity Generator (UG) is a general framework for the external parallelization of mixed integer programming (MIP) solvers. In this paper, we present ParaXpress, a distributed memory parallelization of the powerful commercial MIP solver FICO Xpress. Besides sheer performance, an important feature of Xpress is that it provides an internal parallelization for shared memory systems. When aiming for a best possible performance of ParaXpress on a supercomputer, the question arises how to balance the internal Xpress parallelization and the external parallelization by UG against each other. We provide computational experiments to address this question and we show computational results for running ParaXpress on a Top500 supercomputer, using up to 43,344 cores in parallel.}, language = {en} } @article{BertholdFarmerHeinzetal.2018, author = {Berthold, Timo and Farmer, James and Heinz, Stefan and Perregaard, Michael}, title = {Parallelization of the FICO Xpress Optimizer}, volume = {33}, journal = {Optimization Methods and Software}, number = {3}, doi = {10.1080/10556788.2017.1333612}, pages = {518 -- 529}, year = {2018}, abstract = {Computing hardware has mostly thrashed out the physical limits for speeding up individual computing cores. Consequently, the main line of progress for new hardware is growing the number of computing cores within a single CPU. This makes the study of efficient parallelization schemes for computation-intensive algorithms more and more important. A natural precondition to achieving reasonable speedups from parallelization is maintaining a high workload of the available computational resources. At the same time, reproducibility and reliability are key requirements for software that is used in industrial applications. In this paper, we present the new parallelization concept for the state-of-the-art MIP solver FICO Xpress-Optimizer. MIP solvers like Xpress are expected to be deterministic. This inevitably results in synchronization latencies which render the goal of a satisfying workload a challenge in itself. We address this challenge by following a partial information approach and separating the concepts of simultaneous tasks and independent threads from each other. Our computational results indicate that this leads to a much higher CPU workload and thereby to an improved, almost linear, scaling on modern high-performance CPUs. As an added value, the solution path that Xpress takes is not only deterministic in a fixed environment, but also, to a certain extent, thread-independent. This paper is an extended version of Berthold et al. [Parallelization of the FICO Xpress-Optimizer, in Mathematical Software - ICMS 2016: 5th International Conference, G.-M. Greuel, T. Koch, P. Paule, and A. Sommere, eds., Springer International Publishing, Berlin, 2016, pp. 251-258] containing more detailed technical descriptions, illustrative examples and updated computational results.}, language = {en} } @misc{ShinanoAchterbergBertholdetal.2020, author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Previously Unsolved MIP Instances with ParaSCIP on Supercomputers by using up to 80,000 Cores}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78393}, year = {2020}, abstract = {Mixed-integer programming (MIP) problem is arguably among the hardest classes of optimization problems. This paper describes how we solved 21 previously unsolved MIP instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper, we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @inproceedings{WitzigBertholdHeinz2019, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming}, volume = {11494}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_6}, pages = {84 -- 94}, year = {2019}, abstract = {Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part.}, language = {en} } @article{GamrathBertholdHeinzetal.2019, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-driven fix-and-propagate heuristics for mixed integer programming}, volume = {11}, journal = {Mathematical Programming Computation}, number = {4}, publisher = {Springer}, address = {Berlin Heidelberg}, doi = {10.1007/s12532-019-00159-1}, pages = {675 -- 702}, year = {2019}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early and help to reduce the time needed to prove optimality. In this paper, we present a scheme for start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved first as an LP, and then as an auxiliary MIP if the rounded LP solution does not provide a feasible solution already. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about 60 \% of the instances and by this, help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.}, language = {en} } @misc{WitzigBertholdHeinz2018, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {A Status Report on Conflict Analysis in Mixed Integer Nonlinear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71170}, year = {2018}, abstract = {Mixed integer nonlinear programs (MINLPs) are arguably among the hardest optimization problems, with a wide range of applications. MINLP solvers that are based on linear relaxations and spatial branching work similar as mixed integer programming (MIP) solvers in the sense that they are based on a branch-and-cut algorithm, enhanced by various heuristics, domain propagation, and presolving techniques. However, the analysis of infeasible subproblems, which is an important component of most major MIP solvers, has been hardly studied in the context of MINLPs. There are two main approaches for infeasibility analysis in MIP solvers: conflict graph analysis, which originates from artificial intelligence and constraint programming, and dual ray analysis. The main contribution of this short paper is twofold. Firstly, we present the first computational study regarding the impact of dual ray analysis on convex and nonconvex MINLPs. In that context, we introduce a modified generation of infeasibility proofs that incorporates linearization cuts that are only locally valid. Secondly, we describe an extension of conflict analysis that works directly with the nonlinear relaxation of convex MINLPs instead of considering a linear relaxation. This is work-in-progress, and this short paper is meant to present first theoretical considerations without a computational study for that part.}, language = {en} } @misc{GamrathBertholdHeinzetal.2017, author = {Gamrath, Gerald and Berthold, Timo and Heinz, Stefan and Winkler, Michael}, title = {Structure-driven fix-and-propagate heuristics for mixed integer programming}, issn = {1438-0064}, doi = {10.1007/s12532-019-00159-1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65387}, year = {2017}, abstract = {Primal heuristics play an important role in the solving of mixed integer programs (MIPs). They often provide good feasible solutions early in the solving process and help to solve instances to optimality faster. In this paper, we present a scheme for primal start heuristics that can be executed without previous knowledge of an LP solution or a previously found integer feasible solution. It uses global structures available within MIP solvers to iteratively fix integer variables and propagate these fixings. Thereby, fixings are determined based on the predicted impact they have on the subsequent domain propagation. If sufficiently many variables can be fixed that way, the resulting problem is solved as an LP and the solution is rounded. If the rounded solution did not provide a feasible solution already, a sub-MIP is solved for the neighborhood defined by the variable fixings performed in the first phase. The global structures help to define a neighborhood that is with high probability significantly easier to process while (hopefully) still containing good feasible solutions. We present three primal heuristics that use this scheme based on different global structures. Our computational experiments on standard MIP test sets show that the proposed heuristics find solutions for about three out of five instances and therewith help to improve several performance measures for MIP solvers, including the primal integral and the average solving time.}, language = {en} } @misc{BertelmannKochCeynowaetal.2022, author = {Bertelmann, Roland and Koch, Thorsten and Ceynowa, Klaus and S{\"o}llner, Konstanze and Christof, J{\"u}rgen and Rusch, Beate and Sch{\"a}ffler, Hildegard and Putnings, Markus and Pampel, Heinz and Kuberek, Monika and Boltze, Julia and Lohrum, Stefan and Retter, Regina and H{\"o}llerl, Annika and Faensen, Katja and Steffen, Ronald and Gross, Matthias and Hoffmann, Cornelia and Haoua, Marsa}, title = {DeepGreen: Etablierung und Weiterentwicklung rechtssicherer Workflows zur effizienten Umsetzung von Open-Access-Komponenten in Lizenzvereinbarungen f{\"u}r wissenschaftliche Publikationen - Abschlussbericht}, issn = {1438-0064}, doi = {10.12752/8542}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85420}, year = {2022}, abstract = {DeepGreen wurde vom 01.08.2018 bis zum 30.06.2021 in einer zweiten Projektphase von der Deutschen Forschungsgemeinschaft (DFG) gef{\"o}rdert. DeepGreen unterst{\"u}tzt Bibliotheken als Dienstleister f{\"u}r Hochschulen, außeruniversit{\"a}re Forschungseinrichtungen und die dort t{\"a}tigen Wissenschaftler:innen dabei, Publikationen auf Open-Access-Repositorien frei zug{\"a}nglich zu machen und f{\"o}rdert das Zusammenspiel von wissenschaftlichen Einrichtungen und Verlagen. An der zweiten Projektphase waren der Kooperative Bibliotheksverbund Berlin-Brandenburg, die Bayerische Staatsbibliothek, der Bibliotheksverbund Bayern, die Universit{\"a}tsbibliotheken der Friedrich-Alexander-Universit{\"a}t Erlangen-N{\"u}rnberg und der Technischen Universit{\"a}t Berlin und das Helmholtz Open Science Office beteiligt. In dem Projekt wurde erfolgreich eine technische und organisatorische L{\"o}sung zur automatisierten Verteilung von Artikeldaten wissenschaftlicher Verlage an institutionelle und fachliche Repositorien entwickelt. In der zweiten Projektphase lag der Fokus auf der Erprobung der Datendrehscheibe in der Praxis und der Ausweitung auf weitere Datenabnehmer und weitere Verlage. Im Anschluss an die DFG-gef{\"o}rderte Projektlaufzeit ist DeepGreen in einen zweij{\"a}hrigen Pilotbetrieb {\"u}bergegangen. Ziel des Pilotbetriebs ist es, den {\"U}bergang in einen bundesweiten Real-Betrieb vorzubereiten.}, language = {de} } @article{BoltzeHoellerlKubereketal.2022, author = {Boltze, Julia and H{\"o}llerl, Annika and Kuberek, Monika and Lohrum, Stefan and Pampel, Heinz and Putnings, Markus and Retter, Regina and Rusch, Beate and Sch{\"a}ffler, Hildegard and S{\"o}llner, Konstanze}, title = {DeepGreen: Eine Infrastruktur f{\"u}r die Open-Access-Transformation}, volume = {9}, journal = {O-Bib. Das Offene Bibliotheksjournal}, number = {1}, doi = {10.5282/o-bib/5764}, year = {2022}, abstract = {Mit DeepGreen wurde eine Infrastruktur aufgebaut und etabliert, die Zeitschriftenartikel von wissenschaftlichen Verlagen abholt und berechtigten Bibliotheken zur Ver{\"o}ffentlichung in ihren Repositorien sendet. DeepGreen unterst{\"u}tzt Bibliotheken als Dienstleister f{\"u}r Hochschulen, außeruniversit{\"a}re Einrichtungen und die dort t{\"a}tigen Wissenschaftler*innen, Publikationen auf Open-Access-Repositorien frei zug{\"a}nglich zu machen und f{\"o}rdert das Zusammenspiel von wissenschaftlichen Einrichtungen und Verlagen. DeepGreen wurde von Januar 2016 bis Juni 2021 von der Deutschen Forschungsgemeinschaft gef{\"o}rdert und wird nun vom Kooperativen Bibliotheksverbund Berlin-Brandenburg, von der Bayerischen Staatsbibliothek und von der Universit{\"a}tsbibliothek Erlangen-N{\"u}rnberg in arbeitsteiliger Eigenleistung f{\"u}r zwei Jahre weiterbetrieben. Der vorliegende Beitrag beleuchtet vielf{\"a}ltige Aspekte bei der Realisierung von DeepGreen und geht auf die Perspektiven dieser zentralen Open-Access-Infrastruktur f{\"u}r deutsche Wissenschaftseinrichtungen ein.}, language = {de} } @misc{BertelmannBoltzeCeynowaetal.2021, author = {Bertelmann, Roland and Boltze, Julia and Ceynowa, Klaus and Christof, J{\"u}rgen and Faensen, Katja and Groß, Matthias and Hoffmann, Cornelia and Koch, Thorsten and Kuberek, Monika and Lohrum, Stefan and Pampel, Heinz and Putnings, Markus and Retter, Regina and Rusch, Beate and Sch{\"a}ffler, Hildegard and S{\"o}llner, Konstanze and Steffen, Ronald and Wannick, Eike}, title = {DeepGreen: Open-Access-Transformation in der Informationsinfrastruktur - Anforderungen und Empfehlungen, Version 1.0}, issn = {1438-0064}, doi = {10.12752/8150}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81503}, year = {2021}, abstract = {DeepGreen ist ein Service, der es teilnehmenden institutionellen Open-Access-Repositorien,Open-Access-Fachrepositorien und Forschungsinformationssystemen erleichtert, f{\"u}r sie relevante Verlagspublikationen in zyklischer Abfolge mithilfe von Schnittstellen Open Access zur Verf{\"u}gung zu stellen. Die entsprechende Bandbreite an Relationen zwischen den Akteuren, diverse lizenzrechtliche Rahmenbedingungen sowie technische Anforderungen gestalten das Thema komplex. Ziel dieser Handreichung ist es, neben all diesen Themen, die begleitend beleuchtet werden, im Besonderen Empfehlungen f{\"u}r die reibungslose Nutzung der Daten{\"u}bertragung zu liefern. Außerdem werden mithilfe einer vorangestellten Workflow- Evaluierung Unterschiede und Besonderheiten in den Arbeitsschritten bei institutionellen Open-Access-Repositorien und Open-Access-Fachrepositorien aufgezeigt und ebenfalls mit Empfehlungen angereichert.}, language = {de} }