@misc{AhmadiGritzbachLundNguyenetal.2015, author = {Ahmadi, Sepideh and Gritzbach, Sascha F. and Lund-Nguyen, Kathryn and McCullough-Amal, Devita}, title = {Rolling Stock Rotation Optimization in Days of Strike: An Automated Approach for Creating an Alternative Timetable}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56425}, year = {2015}, abstract = {The operation of a railway network as large as Deutsche Bahn's Intercity Express (ICE) hinges on a number of factors, such as the availability of personnel and the assignment of physical vehicles to a timetable schedule, a problem known as the rolling stock rotation problem (RSRP). In this paper, we consider the problem of creating an alternative timetable in the case that there is a long-term disruption, such as a strike, and the effects that this alternative timetable has on the resulting vehicle rotation plan. We define a priority measure via the Analytic Hierarchy Process (AHP) to determine the importance of each trip in the timetable and therefore which trips to cancel or retain. We then compare our results with those of a limited timetable manually designed by Deutsche Bahn (DB). We find that while our timetable results in a more expensive rotation plan, its flexibility lends itself to a number of simple improvements. Furthermore, our priority measure has the potential to be integrated into the rolling stock rotation optimization process, in particular, the Rotation Optimizer for Railways (ROTOR) software, via the cost function. Ultimately, our method provides the foundation for an automated way of creating a new timetable quickly, and potentially in conjunction with a new rotation plan, in the case of a limited scenario.}, language = {en} }