@inproceedings{BorndoerferArslanElijazyferetal., author = {Bornd{\"o}rfer, Ralf and Arslan, Oytun and Elijazyfer, Ziena and G{\"u}ler, Hakan and Renken, Malte and Sahin, Guvenc and Schlechte, Thomas}, title = {Line Planning on Path Networks with Application to the Istanbul Metrob{\"u}s}, series = {Operations Research Proceedings 2016}, booktitle = {Operations Research Proceedings 2016}, doi = {10.1007/978-3-319-55702-1_32}, pages = {235 -- 241}, abstract = {Bus rapid transit systems in developing and newly industrialized countries often consist of a trunk with a path topology. On this trunk, several overlapping lines are operated which provide direct connections. The demand varies heavily over the day, with morning and afternoon peaks typically in reverse directions. We propose an integer programming model for this problem, derive a structural property of line plans in the static (or single period) ``unimodal demand'' case, and consider approaches to the solution of the multi-period version that rely on clustering the demand into peak and off-peak service periods. An application to the Metrob{\"u}s system of Istanbul is discussed.}, language = {en} } @inproceedings{RenkenAhmadiBorndoerferetal., author = {Renken, Malte and Ahmadi, Amin and Bornd{\"o}rfer, Ralf and Sahin, Guvenc and Schlechte, Thomas}, title = {Demand-Driven Line Planning with Selfish Routing}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer International Publishing}, doi = {10.1007/978-3-319-89920-6_91}, pages = {687 -- 692}, abstract = {Bus rapid transit systems in developing and newly industrialized countries are often operated at the limits of passenger capacity. In particular, demand during morning and afternoon peaks is hardly or even not covered with available line plans. In order to develop demand-driven line plans, we use two mathematical models in the form of integer programming problem formulations. While the actual demand data is specified with origin-destination pairs, the arc-based model considers the demand over the arcs derived from the origin-destination demand. In order to test the accuracy of the models in terms of demand satisfaction, we simulate the optimal solutions and compare number of transfers and travel times. We also question the effect of a selfish route choice behavior which in theory results in a Braess-like paradox by increasing the number of transfers when system capacity is increased with additional lines.}, language = {en} }