@article{MokhtariPattersonHoefling, author = {Mokhtari, Zahra and Patterson, Robert I. A. and H{\"o}fling, Felix}, title = {Spontaneous trail formation in populations of auto-chemotactic walkers}, series = {New Journal of Physics}, volume = {24}, journal = {New Journal of Physics}, doi = {10.1088/1367-2630/ac43ec}, pages = {013012}, language = {en} } @misc{MokhtariPattersonHoefling, author = {Mokhtari, Zahra and Patterson, Robert I. A. and H{\"o}fling, Felix}, title = {Spontaneous trail formation in populations of auto-chemotactic walkers}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-84466}, abstract = {We study the formation of trails in populations of self-propelled agents that make oriented deposits of pheromones and also sense such deposits to which they then respond with gradual changes of their direction of motion. Based on extensive off-lattice computer simulations aiming at the scale of insects, e.g., ants, we identify a number of emerging stationary patterns and obtain qualitatively the non-equilibrium \add{state} diagram of the model, spanned by the strength of the agent--pheromone interaction and the number density of the population. In particular, we demonstrate the spontaneous formation of persistent, macroscopic trails, and highlight some behaviour that is consistent with a dynamic phase transition. This includes a characterisation of the mass of system-spanning trails as a potential order parameter. We also propose a dynamic model for a few macroscopic observables, including the sub-population size of trail-following agents, which captures the early phase of trail formation.}, language = {en} }