@misc{PedersenLindnerRehfeldtetal.2025, author = {Pedersen, Jaap and Lindner, Niels and Rehfeldt, Daniel and Koch, Thorsten}, title = {Comparing Branching Rules for the Quota Steiner Tree Problem with Interference}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-101250}, year = {2025}, abstract = {Branching decisions play a crucial role in branch-and-bound algorithms for solving combinatorial optimization problems. In this paper, we investigate several branching rules applied to the Quota Steiner Tree Problem with Interference (QSTPI). The Quota Steiner Tree Problem (QSTP) generalizes the classical Steiner Tree Problem (STP) in graphs by seeking a minimum-cost tree that connects a subset of profit-associated vertices to meet a given quota. The extended version, QSTPI, introduces interference among vertices: Selecting certain vertices simultaneously reduces their individual contributions to the overall profit. This problem arises, for example, in positioning and connecting wind turbines, where turbines possibly shadow other turbines, reducing their energy yield. While exact solvers for standard STP-related problems often rely heavily on reduction techniques and cutting-plane methods - rarely generating large branch-and-bound trees - experiments reveal that large instances of QSTPI require significantly more branching to compute provably optimal solutions. In contrast to branching on variables, we utilize the combinatorial structure of the QSTPI by branching on the graph's vertices. We adapt classical and problem-specific branching rules and present a comprehensive computational study comparing the effectiveness of these branching strategies.}, language = {en} } @misc{RehfeldtKoch2020, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {On the exact solution of prize-collecting Steiner tree problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78174}, year = {2020}, language = {en} } @misc{KempkeRehfeldtKoch2024, author = {Kempke, Nils-Christian and Rehfeldt, Daniel and Koch, Thorsten}, title = {A Massively Parallel Interior-Point-Method for Arrowhead Linear Programs}, issn = {1438-0064}, arxiv = {http://arxiv.org/abs/2412.07731}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-98829}, year = {2024}, abstract = {In practice, non-specialized interior point algorithms often cannot utilize the massively parallel compute resources offered by modern many- and multi-core compute platforms. However, efficient distributed solution techniques are required, especially for large-scale linear programs. This article describes a new decomposition technique for systems of linear equations implemented in the parallel interior-point solver PIPS-IPM++. The algorithm exploits a matrix structure commonly found in optimization problems: a doubly-bordered block-diagonal or arrowhead structure. This structure is preserved in the linear KKT systems solved during each iteration of the interior-point method. We present a hierarchical Schur complement decomposition that distributes and solves the linear optimization problem; it is designed for high-performance architectures and scales well with the availability of additional computing resources. The decomposition approach uses the border constraints' locality to decouple the factorization process. Our approach is motivated by large-scale unit-commitment problems. We demonstrate the performance of our method on a set of mid-to large-scale instances, some of which have more than 10^9 nonzeros in their constraint matrix.}, language = {en} } @misc{RehfeldtFujisawaKochetal.2022, author = {Rehfeldt, Daniel and Fujisawa, Katsuki and Koch, Thorsten and Nakao, Masahiro and Shinano, Yuji}, title = {Computing single-source shortest paths on graphs with over 8 trillion edges}, issn = {1438-0064}, doi = {10.12752/8818}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88180}, year = {2022}, abstract = {This paper introduces an implementation for solving the single-source shortest path problem on distributed-memory machines. It is tailored to power-law graphs and scales to trillions of edges. The new implementation reached 2nd and 10th place in the latest Graph500 benchmark in June 2022 and handled the largest and second-largest graphs among all participants.}, language = {en} } @misc{PedersenLindnerRehfeldtetal.2025, author = {Pedersen, Jaap and Lindner, Niels and Rehfeldt, Daniel and Koch, Thorsten}, title = {Integrated Wind Farm Design: Optimizing Turbine Placement and Cable Routing with Wake Effects}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-99218}, year = {2025}, abstract = {An accelerated deployment of renewable energy sources is crucial for a successful transformation of the current energy system, with wind energy playing a key role in this transition. This study addresses the integrated wind farm layout and cable routing problem, a challenging nonlinear optimization problem. We model this problem as an extended version of the Quota Steiner Tree Problem (QSTP), optimizing turbine placement and network connectivity simultaneously to meet specified expansion targets. Our proposed approach accounts for the wake effect - a region of reduced wind speed induced by each installed turbine - and enforces minimum spacing between turbines. We introduce an exact solution framework in terms of the novel Quota Steiner Tree Problem with interference (QSTPI). By leveraging an interference-based splitting strategy, we develop an advanced solver capable of tackling large-scale problem instances. The presented approach outperforms generic state-of-the-art mixed integer programming solvers on our dataset by up to two orders of magnitude. Moreover, we demonstrate that our integrated method significantly reduces the costs in contrast to a sequential approach. Thus, we provide a planning tool that enhances existing planning methodologies for supporting a faster and cost-efficient expansion of wind energy.}, language = {en} } @misc{PedersenWeinandSyranidouetal.2023, author = {Pedersen, Jaap and Weinand, Jann Michael and Syranidou, Chloi and Rehfeldt, Daniel}, title = {An efficient solver for multi-objective onshore wind farm siting and network integration}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-90590}, year = {2023}, abstract = {Existing planning approaches for onshore wind farm siting and network integration often do not meet minimum cost solutions or social and environmental considerations. In this paper, we develop an approach for the multi-objective optimization of turbine locations and their network connection using a Quota Steiner tree problem. Applying a novel transformation on a known directed cut formulation, reduction techniques, and heuristics, we design an exact solver that makes large problem instances solvable and outperforms generic MIP solvers. Although our case studies in selected regions of Germany show large trade-offs between the objective criteria of cost and landscape impact, small burdens on one criterion can significantly improve the other criteria. In addition, we demonstrate that contrary to many approaches for exclusive turbine siting, network integration must be simultaneously optimized in order to avoid excessive costs or landscape impacts in the course of a wind farm project. Our novel problem formulation and the developed solver can assist planners in decision making and help optimize wind farms in large regions in the future.}, language = {en} } @misc{RehfeldtKoch2020, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Implications, conflicts, and reductions for Steiner trees}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-80039}, year = {2020}, language = {en} } @misc{RehfeldtFranzKoch2020, author = {Rehfeldt, Daniel and Franz, Henriette and Koch, Thorsten}, title = {Optimal Connected Subgraphs: Formulations and Algorithms}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79094}, year = {2020}, language = {en} } @misc{RehfeldtKochShinano2022, author = {Rehfeldt, Daniel and Koch, Thorsten and Shinano, Yuji}, title = {Faster exact solution of sparse MaxCut and QUBO problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85715}, year = {2022}, language = {en} } @misc{BestuzhevaBesanconChenetal.2021, author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and van Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and van der Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc E. and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 8.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85309}, year = {2021}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type for cut selection, and a complete rework of the way nonlinear constraints are handled. Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further, UG now includes a unified framework to parallelize all solvers, a utility to analyze computational experiments has been added to GCG, dual solutions can be postsolved by PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional problem classes and major performance improvements are available in SCIP-Jack.}, language = {en} }