@misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {On the exact solution of prize-collecting Steiner tree problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78174}, language = {en} } @misc{RehfeldtFranzKoch, author = {Rehfeldt, Daniel and Franz, Henriette and Koch, Thorsten}, title = {Optimal Connected Subgraphs: Formulations and Algorithms}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79094}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Implications, conflicts, and reductions for Steiner trees}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-80039}, language = {en} } @misc{RehfeldtKochShinano, author = {Rehfeldt, Daniel and Koch, Thorsten and Shinano, Yuji}, title = {Faster exact solution of sparse MaxCut and QUBO problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85715}, language = {en} } @misc{RehfeldtFujisawaKochetal., author = {Rehfeldt, Daniel and Fujisawa, Katsuki and Koch, Thorsten and Nakao, Masahiro and Shinano, Yuji}, title = {Computing single-source shortest paths on graphs with over 8 trillion edges}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88180}, abstract = {This paper introduces an implementation for solving the single-source shortest path problem on distributed-memory machines. It is tailored to power-law graphs and scales to trillions of edges. The new implementation reached 2nd and 10th place in the latest Graph500 benchmark in June 2022 and handled the largest and second-largest graphs among all participants.}, language = {en} } @misc{BestuzhevaBesanconChenetal., author = {Bestuzheva, Ksenia and Besan{\c{c}}on, Mathieu and Chen, Wei-Kun and Chmiela, Antonia and Donkiewicz, Tim and van Doornmalen, Jasper and Eifler, Leon and Gaul, Oliver and Gamrath, Gerald and Gleixner, Ambros and Gottwald, Leona and Graczyk, Christoph and Halbig, Katrin and Hoen, Alexander and Hojny, Christopher and van der Hulst, Rolf and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Matter, Frederic and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc E. and Rehfeldt, Daniel and Schlein, Steffan and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Sofranac, Boro and Turner, Mark and Vigerske, Stefan and Wegscheider, Fabian and Wellner, Philipp and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 8.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-85309}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 8.0 of the SCIP Optimization Suite. Major updates in SCIP include improvements in symmetry handling and decomposition algorithms, new cutting planes, a new plugin type for cut selection, and a complete rework of the way nonlinear constraints are handled. Additionally, SCIP 8.0 now supports interfaces for Julia as well as Matlab. Further, UG now includes a unified framework to parallelize all solvers, a utility to analyze computational experiments has been added to GCG, dual solutions can be postsolved by PaPILO, new heuristics and presolving methods were added to SCIP-SDP, and additional problem classes and major performance improvements are available in SCIP-Jack.}, language = {en} } @misc{PedersenWeinandSyranidouetal., author = {Pedersen, Jaap and Weinand, Jann Michael and Syranidou, Chloi and Rehfeldt, Daniel}, title = {An efficient solver for multi-objective onshore wind farm siting and network integration}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-90590}, abstract = {Existing planning approaches for onshore wind farm siting and network integration often do not meet minimum cost solutions or social and environmental considerations. In this paper, we develop an approach for the multi-objective optimization of turbine locations and their network connection using a Quota Steiner tree problem. Applying a novel transformation on a known directed cut formulation, reduction techniques, and heuristics, we design an exact solver that makes large problem instances solvable and outperforms generic MIP solvers. Although our case studies in selected regions of Germany show large trade-offs between the objective criteria of cost and landscape impact, small burdens on one criterion can significantly improve the other criteria. In addition, we demonstrate that contrary to many approaches for exclusive turbine siting, network integration must be simultaneously optimized in order to avoid excessive costs or landscape impacts in the course of a wind farm project. Our novel problem formulation and the developed solver can assist planners in decision making and help optimize wind farms in large regions in the future.}, language = {en} }