@inproceedings{BertholdFeydyStuckey2010, author = {Berthold, Timo and Feydy, Thibaut and Stuckey, Peter}, title = {Rapid Learning for Binary Programs}, series = {Proc. of CPAIOR 2010}, volume = {6140}, booktitle = {Proc. of CPAIOR 2010}, editor = {Lodi, Andrea and Milano, Michela and Toth, Paolo}, publisher = {Springer}, pages = {51 -- 55}, year = {2010}, language = {en} } @misc{BertholdFeydyStuckey, author = {Berthold, Timo and Feydy, Thibaut and Stuckey, Peter}, title = {Rapid Learning for Binary Programs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-11663}, number = {10-04}, abstract = {Learning during search allows solvers for discrete optimization problems to remember parts of the search that they have already performed and avoid revisiting redundant parts. Learning approaches pioneered by the SAT and CP communities have been successfully incorporated into the SCIP constraint integer programming platform. In this paper we show that performing a heuristic constraint programming search during root node processing of a binary program can rapidly learn useful nogoods, bound changes, primal solutions, and branching statistics that improve the remaining IP search.}, language = {en} } @misc{BertholdStuckeyWitzig, author = {Berthold, Timo and Stuckey, Peter and Witzig, Jakob}, title = {Local Rapid Learning for Integer Programs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71190}, abstract = {Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is applied at the root to learn information to support the remaining MIP solve. This has been demonstrated to be beneficial for binary programs. In this paper, we extend the idea of Rapid Learning to integer programs, where not all variables are restricted to the domain {0, 1}, and rather than just running a rapid CP search at the root, we will apply it repeatedly at local search nodes within the MIP search tree. To do so efficiently, we present six heuristic criteria to predict the chance for local Rapid Learning to be successful. Our computational experiments indicate that our extended Rapid Learning algorithm significantly speeds up MIP search and is particularly beneficial on highly dual degenerate problems.}, language = {en} } @inproceedings{BertholdStuckeyWitzig, author = {Berthold, Timo and Stuckey, Peter and Witzig, Jakob}, title = {Local Rapid Learning for Integer Programs}, series = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, volume = {11494}, booktitle = {Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2019}, publisher = {Springer}, doi = {10.1007/978-3-030-19212-9_5}, pages = {67 -- 83}, abstract = {Conflict learning algorithms are an important component of modern MIP and CP solvers. But strong conflict information is typically gained by depth-first search. While this is the natural mode for CP solving, it is not for MIP solving. Rapid Learning is a hybrid CP/MIP approach where CP search is applied at the root to learn information to support the remaining MIP solve. This has been demonstrated to be beneficial for binary programs. In this paper, we extend the idea of Rapid Learning to integer programs, where not all variables are restricted to the domain {0, 1}, and rather than just running a rapid CP search at the root, we will apply it repeatedly at local search nodes within the MIP search tree. To do so efficiently, we present six heuristic criteria to predict the chance for local Rapid Learning to be successful. Our computational experiments indicate that our extended Rapid Learning algorithm significantly speeds up MIP search and is particularly beneficial on highly dual degenerate problems.}, language = {en} }