@article{KlusKoltaiSchuette, author = {Klus, Stefan and Koltai, Peter and Sch{\"u}tte, Christof}, title = {On the numerical approximation of the Perron-Frobenius and Koopman operator}, series = {Journal of Computational Dynamics}, volume = {3}, journal = {Journal of Computational Dynamics}, number = {1}, doi = {10.3934/jcd.2016003}, pages = {51 -- 77}, abstract = {Information about the behavior of dynamical systems can often be obtained by analyzing the eigenvalues and corresponding eigenfunctions of linear operators associated with a dynamical system. Examples of such operators are the Perron-Frobenius and the Koopman operator. In this paper, we will review di� fferent methods that have been developed over the last decades to compute � infinite-dimensional approximations of these in� finite-dimensional operators - in particular Ulam's method and Extended Dynamic Mode Decomposition (EDMD) - and highlight the similarities and di� fferences between these approaches. The results will be illustrated using simple stochastic di� fferential equations and molecular dynamics examples.}, language = {en} }