@misc{BertholdPerregaardMeszaros, author = {Berthold, Timo and Perregaard, Michael and M{\´e}sz{\´a}ros, Csaba}, title = {Four good reasons to use an Interior Point solver within a MIP solver}, issn = {1438-0064}, doi = {10.1007/978-3-319-89920-6_22}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64599}, abstract = {"Interior point algorithms are a good choice for solving pure LPs or QPs, but when you solve MIPs, all you need is a dual simplex." This is the common conception which disregards that an interior point solution provides some unique structural insight into the problem at hand. In this paper, we will discuss some of the benefits that an interior point solver brings to the solution of difficult MIPs within FICO Xpress. This includes many different components of the MIP solver such as branching variable selection, primal heuristics, preprocessing, and of course the solution of the LP relaxation.}, language = {en} } @inproceedings{BertholdFarmerHeinzetal., author = {Berthold, Timo and Farmer, James and Heinz, Stefan and Perregaard, Michael}, title = {Parallelization of the FICO Xpress-Optimizer}, series = {Mathematical Software - ICMS 2016, 5th International Conference Berlin, Germany, July 11-14, 2016 Proceedings}, booktitle = {Mathematical Software - ICMS 2016, 5th International Conference Berlin, Germany, July 11-14, 2016 Proceedings}, doi = {10.1007/978-3-319-42432-3_31}, pages = {251 -- 258}, language = {en} } @article{BertholdFarmerHeinzetal., author = {Berthold, Timo and Farmer, James and Heinz, Stefan and Perregaard, Michael}, title = {Parallelization of the FICO Xpress Optimizer}, series = {Optimization Methods and Software}, volume = {33}, journal = {Optimization Methods and Software}, number = {3}, doi = {10.1080/10556788.2017.1333612}, pages = {518 -- 529}, abstract = {Computing hardware has mostly thrashed out the physical limits for speeding up individual computing cores. Consequently, the main line of progress for new hardware is growing the number of computing cores within a single CPU. This makes the study of efficient parallelization schemes for computation-intensive algorithms more and more important. A natural precondition to achieving reasonable speedups from parallelization is maintaining a high workload of the available computational resources. At the same time, reproducibility and reliability are key requirements for software that is used in industrial applications. In this paper, we present the new parallelization concept for the state-of-the-art MIP solver FICO Xpress-Optimizer. MIP solvers like Xpress are expected to be deterministic. This inevitably results in synchronization latencies which render the goal of a satisfying workload a challenge in itself. We address this challenge by following a partial information approach and separating the concepts of simultaneous tasks and independent threads from each other. Our computational results indicate that this leads to a much higher CPU workload and thereby to an improved, almost linear, scaling on modern high-performance CPUs. As an added value, the solution path that Xpress takes is not only deterministic in a fixed environment, but also, to a certain extent, thread-independent. This paper is an extended version of Berthold et al. [Parallelization of the FICO Xpress-Optimizer, in Mathematical Software - ICMS 2016: 5th International Conference, G.-M. Greuel, T. Koch, P. Paule, and A. Sommere, eds., Springer International Publishing, Berlin, 2016, pp. 251-258] containing more detailed technical descriptions, illustrative examples and updated computational results.}, language = {en} } @inproceedings{BertholdPerregaardMeszaros, author = {Berthold, Timo and Perregaard, Michael and M{\´e}sz{\´a}ros, Csaba}, title = {Four Good Reasons to Use an Interior Point Solver Within a MIP Solver}, series = {Kliewer N., Ehmke J., Bornd{\"o}rfer R. (eds) Operations Research Proceedings 2017}, booktitle = {Kliewer N., Ehmke J., Bornd{\"o}rfer R. (eds) Operations Research Proceedings 2017}, doi = {10.1007/978-3-319-89920-6_22}, pages = {159 -- 164}, abstract = {"Interior point algorithms are a good choice for solving pure LPs or QPs, but when you solve MIPs, all you need is a dual simplex" This is the common conception which disregards that an interior point solution provides some unique structural insight into the problem at hand. In this paper, we will discuss some of the benefits that an interior point solver brings to the solution of difficult MIPs within FICO Xpress. This includes many different components of the MIP solver such as branching variable selection, primal heuristics, preprocessing, and of course the solution of the LP relaxation.}, language = {en} }