@article{PetkovicChenGamrathetal., author = {Petkovic, Milena and Chen, Ying and Gamrath, Inken and Gotzes, Uwe and Hadjidimitrou, Natalia Selini and Zittel, Janina and Xu, Xiaofei and Koch, Thorsten}, title = {A hybrid approach for high precision prediction of gas flows}, series = {Energy Systems}, volume = {13}, journal = {Energy Systems}, doi = {10.1007/s12667-021-00466-4}, pages = {383 -- 408}, abstract = {About 23\% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition ("Energiewende"). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes.}, language = {en} } @article{PetkovicKochZittel, author = {Petkovic, Milena and Koch, Thorsten and Zittel, Janina}, title = {Deep learning for spatio-temporal supply anddemand forecasting in natural gas transmission networks}, series = {Energy Science and Engineering}, journal = {Energy Science and Engineering}, doi = {https://doi.org/10.1002/ese3.932}, abstract = {Germany is the largest market for natural gas in the European Union, with an annual consumption of approx. 95 billion cubic meters. Germany's high-pressure gas pipeline network is roughly 40,000 km long, which enables highly fluctuating quantities of gas to be transported safely over long distances. Considering that similar amounts of gas are also transshipped through Germany to other EU states, it is clear that Germany's gas transport system is essential to the European energy supply. Since the average velocity of gas in a pipeline is only 25km/h, an adequate high-precision, high-frequency forecasting of supply and demand is crucial for efficient control and operation of such a transmission network. We propose a deep learning model based on spatio-temporal convolutional neural networks (DLST) to tackle the problem of gas flow forecasting in a complex high-pressure transmission network. Experiments show that our model effectively captures comprehensive spatio-temporal correlations through modeling gas networks and consistently outperforms state-of-the-art benchmarks on real-world data sets by at least 21\%. The results demonstrate that the proposed model can deal with complex nonlinear gas network flow forecasting with high accuracy and effectiveness.}, language = {en} }