@masterthesis{Schotte, type = {Bachelor Thesis}, author = {Schotte, Merlind}, title = {Automatische Dickenbestimmung der mineralisierten Schicht in Skelettelementen von Knorpelfischen anhand von CT- Bilddaten}, abstract = {Diese Bachelorarbeit beschäftigt sich mit der Entwicklung eines allgemeinen Verfahrens, welches die Dicke der mineralisierten Schicht von Haikieferelementen automatisch bestimmt. Dabei soll das Verfahren die Dicke näherungsweise im zweidimensionalen (2D) Raum sowie im dreidimensionalen (3D) Raum anhand von Computertomografie-Scans berechnen (im Folgenden als zweidimensionaler bzw. dreidimensionaler Fall bezeichnet). Es werden drei mögliche Verfahren eingef{\"u}hrt und im Anschluss auf ihre Verwendbarkeit analysiert. F{\"u}r die Implementierung zur Dickenbestimmung wird der Kern der Rayburst Sampling Methode verwendet und im Weiteren f{\"u}r den 2D-Raum durch kleinere Optimierungen verbessert. Die Überpr{\"u}fung der Genauigkeit des f{\"u}r den zweidimensionalen Fall entwickelten Programms erfolgt manuell. F{\"u}r einen Vergleich im 3D-Raum wird ein zweites Verfahren programmiert, das auf der Berechnung der Isoflächen basiert. Diese Arbeit ist in den Bereich der angewandten Mathematik mit dem Schwerpunkt Informatik einzuordnen. Das entwickelte Programm wird im Anschluss Anwendung im Bereich der Biologie am Max-Planck-Institut f{\"u}r Grenzflächen- und Kolloidforschung Potsdam-Golm finden.}, language = {de} } @misc{Schotte, type = {Master Thesis}, author = {Schotte, Merlind}, title = {Finite-Elemente-Techniken zur mechanischen Stabilit{\"a}tsanalyse der Hyomandibula von Rochen}, abstract = {Haie und Rochen sind die einzigen Wirbeltiere, die sich durch ein Knorpelskelett auszeichnen, das mit winzigen mineralisierten Elementen bedeckt ist, die sogenannten Tesserae. Obwohl dieser mineralisierte Knorpel seit hunderten von Millionen Jahren ein charakteristisches Merkmal dieser Tiere ist, ist der funktionelle Vorteil dieses Gewebestruktur bisher unklar geblieben. In dieser Masterarbeit wird diese Struktur mithilfe der Finite-Elemente-Methode(FEM) untersucht, wobei biologische Informationen zu den Muskeln und der geometrischen Gegebenheiten aus einem hochaufgel{\"o}sten, kontrastgef{\"a}rbten μCT-Scan einer Stechrochenhyomandibula verwendet werden. F{\"u}r die Analyse werden Computer-Aided-Design(CAD)-Modelle und FE-Modelle konstruiert sowie vorhandene Methoden erweitert, um bei den Berechnungen die Charakteristika des biologischen Objektes bestm{\"o}glich zu ber{\"u}cksichtigen. Die Modelle bauen auf einer Segmentierung der Hyomandibula auf, wobei die mehreren tausend Tesserae in diesem Datensatz bereits voneinander isoliert sind. F{\"u}r die Modellierung der Hyomandibula wird als erstes ein CAD-Modell konstruiert. Bei dieser Konstruktion wird eine Tesserae-Mittelfl{\"a}che erstellt und im Anschluss nach innen und außen verschoben. Der n{\"a}chste Schritt basiert auf dem Einbau von Zwischenw{\"a}nden, die die Tesserae voneinander separieren. Auf Grundlage dieses Modells wird ein Tetraedergitter generiert, das die Basis f{\"u}r den zweiten Teil dieser Arbeit darstellt - die Berechnungen mit der FEM. Die wesentliche Aufgabe des zweiten Teils beinhaltet die Konstruktion eines FE-Modells, das in die lineare FEM einzuordnen ist. In dieses fließen die Randbedingungen und die Materialeigenschaften des Skelettelements ein. Mithilfe der FEM lassen sich die durch Krafteinwirkung auftretenden Verschiebungen und Spannungen der Hyomandibula ermitteln. Die Ergebnisse geben R{\"u}ckschl{\"u}sse {\"u}ber das Verhalten des Materials, die Besonderheiten der Geometrie und damit {\"u}ber die Stabilit{\"a}t des Objektes. Der dritte Teil der Abschlussarbeit besch{\"a}ftigt sich mit zus{\"a}tzlichen Anpassungen und {\"A}nderungen der Modelle (CAD-Modell und FE-Modell), um diese Resultate mit dem Modell zu vergleichen, das der Biologie am n{\"a}chsten kommt. Diese Anpassungen beinhalten das Variieren der Dicke der mineralisierten Schicht, die Konstellation des Materials und den Abstand zwischen den Tesserae. Die Ergebnisse zeigen, dass sowohl die Tesserae-Struktur als auch die zwischen den Tesserae liegenden Kollagenfasern vermutlich keinen Einfluss auf die Mechanik und dementsprechend die Stabilit{\"a}t haben. Jedoch lassen die unterschiedlichen Resultate im Fall verschieden gew{\"a}hlter Tesserae-Dicken annehmen, dass diese sehr wohl einen Einfluss besitzen.}, language = {de} } @article{SchotteChaumelDeanetal., author = {Schotte, Merlind and Chaumel, J{\´u}lia and Dean, Mason N. and Baum, Daniel}, title = {Image analysis pipeline for segmentation of a biological porosity network, the lacuno-canalicular system in stingray tesserae}, series = {MethodsX}, volume = {7}, journal = {MethodsX}, doi = {10.1016/j.mex.2020.100905}, pages = {100905}, abstract = {A prerequisite for many analysis tasks in modern comparative biology is the segmentation of 3-dimensional (3D) images of the specimens being investigated (e.g. from microCT data). Depending on the specific imaging technique that was used to acquire the images and on the image resolution, different segmentation tools will be required. While some standard tools exist that can often be applied for specific subtasks, building whole processing pipelines solely from standard tools is often difficult. Some tasks may even necessitate the implementation of manual interaction tools to achieve a quality that is sufficient for the subsequent analysis. In this work, we present a pipeline of segmentation tools that can be used for the semi-automatic segmentation and quantitative analysis of voids in tissue (i.e. internal structural porosity). We use this pipeline to analyze lacuno-canalicular networks in stingray tesserae from 3D images acquired with synchrotron microCT. * The first step of this processing pipeline, the segmentation of the tesserae, was performed using standard marker-based watershed segmentation. The efficient processing of the next two steps, that is, the segmentation of all lacunae spaces belonging to a specific tessera and the separation of these spaces into individual lacunae required modern, recently developed tools. * For proofreading, we developed a graph-based interactive method that allowed us to quickly split lacunae that were accidentally merged, and to merge lacunae that were wrongly split. * Finally, the tesserae and their corresponding lacunae were subdivided into anatomical regions of interest (structural wedges) using a semi- manual approach.}, language = {en} } @misc{SchotteChaumelDeanetal., author = {Schotte, Merlind and Chaumel, J{\´u}lia and Dean, Mason N. and Baum, Daniel}, title = {Image analysis pipeline for segmentation of a biological porosity network, the lacuno-canalicular system in stingray tesserae}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78237}, abstract = {A prerequisite for many analysis tasks in modern comparative biology is the segmentation of 3-dimensional (3D) images of the specimens being investigated (e.g. from microCT data). Depending on the specific imaging technique that was used to acquire the images and on the image resolution, different segmentation tools will be required. While some standard tools exist that can often be applied for specific subtasks, building whole processing pipelines solely from standard tools is often difficult. Some tasks may even necessitate the implementation of manual interaction tools to achieve a quality that is sufficient for the subsequent analysis. In this work, we present a pipeline of segmentation tools that can be used for the semi-automatic segmentation and quantitative analysis of voids in tissue (i.e. internal structural porosity). We use this pipeline to analyze lacuno-canalicular networks in stingray tesserae from 3D images acquired with synchrotron microCT. * The first step of this processing pipeline, the segmentation of the tesserae, was performed using standard marker-based watershed segmentation. The efficient processing of the next two steps, that is, the segmentation of all lacunae spaces belonging to a specific tessera and the separation of these spaces into individual lacunae required modern, recently developed tools. * For proofreading, we developed a graph-based interactive method that allowed us to quickly split lacunae that were accidentally merged, and to merge lacunae that were wrongly split. * Finally, the tesserae and their corresponding lacunae were subdivided into anatomical regions of interest (structural wedges) using a semi- manual approach.}, language = {en} } @article{ChaumelSchotteBizzarroetal., author = {Chaumel, J{\´u}lia and Schotte, Merlind and Bizzarro, Joseph J. and Zaslansky, Paul and Fratzl, Peter and Baum, Daniel and Dean, Mason N.}, title = {Co-aligned chondrocytes: Zonal morphological variation and structured arrangement of cell lacunae in tessellated cartilage}, series = {Bone}, volume = {134}, journal = {Bone}, doi = {10.1016/j.bone.2020.115264}, pages = {115264}, abstract = {In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the function(s) of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue from our study species and that cells maintain the similar volume even when they have been incorporated into tesserae. This discovery supports previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes—being flatter further from and more spherical closer to the unmineralized cartilage matrix and larger in the center of tesserae— and show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact (e.g. that pores contain a nutrient source). We hypothesize that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongate series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone.}, language = {en} } @misc{ChaumelSchotteBizzarroetal., author = {Chaumel, J{\´u}lia and Schotte, Merlind and Bizzarro, Joseph J. and Zaslansky, Paul and Fratzl, Peter and Baum, Daniel and Dean, Mason N.}, title = {Co-aligned chondrocytes: Zonal morphological variation and structured arrangement of cell lacunae in tessellated cartilage}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-77087}, abstract = {In most vertebrates the embryonic cartilaginous skeleton is replaced by bone during development. During this process, cartilage cells (chondrocytes) mineralize the extracellular matrix and undergo apoptosis, giving way to bone cells (osteocytes). In contrast, sharks and rays (elasmobranchs) have cartilaginous skeletons throughout life, where only the surface mineralizes, forming a layer of tiles (tesserae). Elasmobranch chondrocytes, unlike those of other vertebrates, survive cartilage mineralization and are maintained alive in spaces (lacunae) within tesserae. However, the function(s) of the chondrocytes in the mineralized tissue remain unknown. Applying a custom analysis workflow to high-resolution synchrotron microCT scans of tesserae, we characterize the morphologies and arrangements of stingray chondrocyte lacunae, using lacunar morphology as a proxy for chondrocyte morphology. We show that the cell density is comparable in unmineralized and mineralized tissue from our study species and that cells maintain the similar volume even when they have been incorporated into tesserae. This discovery supports previous hypotheses that elasmobranch chondrocytes, unlike those of other taxa, do not proliferate, hypertrophy or undergo apoptosis during mineralization. Tessera lacunae show zonal variation in their shapes—being flatter further from and more spherical closer to the unmineralized cartilage matrix and larger in the center of tesserae— and show pronounced organization into parallel layers and strong orientation toward neighboring tesserae. Tesserae also exhibit local variation in lacunar density, with the density considerably higher near pores passing through the tesseral layer, suggesting pores and cells interact (e.g. that pores contain a nutrient source). We hypothesize that the different lacunar types reflect the stages of the tesserae formation process, while also representing local variation in tissue architecture and cell function. Lacunae are linked by small passages (canaliculi) in the matrix to form elongate series at the tesseral periphery and tight clusters in the center of tesserae, creating a rich connectivity among cells. The network arrangement and the shape variation of chondrocytes in tesserae indicate that cells may interact within and between tesserae and manage mineralization differently from chondrocytes in other vertebrates, perhaps performing analogous roles to osteocytes in bone.}, language = {en} } @article{AlhaddadFoerstnerGrothetal., author = {Alhaddad, Samer and F{\"o}rstner, Jens and Groth, Stefan and Gr{\"u}newald, Daniel and Grynko, Yevgen and Hannig, Frank and Kenter, Tobias and Pfreundt, Franz-Josef and Plessl, Christian and Schotte, Merlind and Steinke, Thomas and Teich, J{\"u}rgen and Weiser, Martin and Wende, Florian}, title = {HighPerMeshes - A Domain-Specific Language for Numerical Algorithms on Unstructured Grids}, series = {Euro-Par 2020: Parallel Processing Workshops.}, journal = {Euro-Par 2020: Parallel Processing Workshops.}, publisher = {Springer}, doi = {10.1007/978-3-030-71593-9_15}, pages = {185 -- 196}, abstract = {Solving partial differential equations on unstructured grids is a cornerstone of engineering and scientific computing. Nowadays, heterogeneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-efficient and computationally demanding simulations. We developed the HighPerMeshes C++-embedded Domain-Specific Language (DSL) for bridging the abstraction gap between the mathematical and algorithmic formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different parallel programming and runtime models on the other hand. Thus, the HighPerMeshes DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HighPer-Meshes DSL, and demonstrate its usage with three examples, a Poisson and monodomain problem, respectively, solved by the continuous finite element method, and the discontinuous Galerkin method for Maxwell's equation. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters is presented. Finally, the achievable performance and scalability are demonstrated for a typical example problem on a multi-core CPU cluster.}, language = {en} } @article{AlhaddadFoerstnerGrothetal., author = {Alhaddad, Samer and F{\"o}rstner, Jens and Groth, Stefan and Gr{\"u}newald, Daniel and Grynko, Yevgen and Hannig, Frank and Kenter, Tobias and Pfreundt, F.J. and Plessl, Christian and Schotte, Merlind and Steinke, Thomas and Teich, J. and Weiser, Martin and Wende, Florian}, title = {The HighPerMeshes Framework for Numerical Algorithms on Unstructured Grids}, series = {Concurrency and Computation: Practice and Experience}, volume = {34}, journal = {Concurrency and Computation: Practice and Experience}, number = {14}, doi = {10.1002/cpe.6616}, abstract = {Solving PDEs on unstructured grids is a cornerstone of engineering and scientific computing. Heterogeneous parallel platforms, including CPUs, GPUs, and FPGAs, enable energy-efficient and computationally demanding simulations. In this article, we introduce the HPM C++-embedded DSL that bridges the abstraction gap between the mathematical formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different programming models on the other hand. Thus, the HPM DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HPM DSL, and demonstrate its usage with three examples. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters, is presented. A code generator and a matching back end allow the acceleration of HPM code with GPUs. Finally, the achievable performance and scalability are demonstrated for different example problems.}, language = {en} }