@article{DibakJdelRazoDeSanchoetal.2018, author = {Dibak, Manuel and J. del Razo, Mauricio and De Sancho, David and Sch{\"u}tte, Christof and No{\´e}, Frank}, title = {MSM/RD: Coupling Markov state models of molecular kinetics with reaction-diffusion simulations}, volume = {148}, journal = {Journal of Chemical Physics}, number = {214107}, doi = {10.1063/1.5020294}, year = {2018}, abstract = {Molecular dynamics (MD) simulations can model the interactions between macromolecules with high spatiotemporal resolution but at a high computational cost. By combining high-throughput MD with Markov state models (MSMs), it is now possible to obtain long-timescale behavior of small to intermediate biomolecules and complexes. To model the interactions of many molecules at large lengthscales, particle-based reaction-diffusion (RD) simulations are more suitable but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly desirable, as they could efficiently produce simulations at large time- and lengthscales, while still conserving the characteristic features of the interactions observed at atomic detail. While such a coupling seems straightforward, fundamental questions are still open: Which definition of MSM states is suitable? Which protocol to merge and split RD particles in an association/dissociation reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we make the first step towards MSM/RD by laying out a general theory of coupling and proposing a first implementation for association/dissociation of a protein with a small ligand (A + B <--> C). Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported.}, language = {en} } @article{DibakdelRazodeSanchoetal.2018, author = {Dibak, Manuel and del Razo, Mauricio J. and de Sancho, David and Sch{\"u}tte, Christof and No{\´e}, Frank}, title = {MSM/RD: Coupling Markov state models of molecular kinetics with reaction-diffusion simulations}, volume = {148}, journal = {Journal of Chemical Physics}, number = {21}, doi = {10.1063/1.5020294}, year = {2018}, abstract = {Molecular dynamics (MD) simulations can model the interactions between macromolecules with high spatiotemporal resolution but at a high computational cost. By combining high-throughput MD with Markov state models (MSMs), it is now possible to obtain long time-scale behavior of small to intermediate biomolecules and complexes. To model the interactions of many molecules at large length scales, particle-based reaction-diffusion (RD) simulations are more suitable but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly desirable, as they could efficiently produce simulations at large time and length scales, while still conserving the characteristic features of the interactions observed at atomic detail. While such a coupling seems straightforward, fundamental questions are still open: Which definition of MSM states is suitable? Which protocol to merge and split RD particles in an association/dissociation reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we make the first step toward MSM/RD by laying out a general theory of coupling and proposing a first implementation for association/dissociation of a protein with a small ligand (A + B ⇌ C). Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported.}, language = {en} } @article{delRazoDibakSchuetteetal.2021, author = {del Razo, Mauricio J. and Dibak, Manuel and Sch{\"u}tte, Christof and No{\´e}, Frank}, title = {Multiscale molecular kinetics by coupling Markov state models and reaction-diffusion dynamics}, volume = {155}, journal = {The Journal of Chemical Physics}, number = {12}, doi = {10.1063/5.0060314}, year = {2021}, language = {en} } @article{ArmasMerbisMeylahnetal.2025, author = {Armas, Jay and Merbis, Wout and Meylahn, Janusz M and Rafiee Rad, Soroush and del Razo, Mauricio J}, title = {Risk aversion can promote cooperation}, volume = {6}, journal = {Journal of Physics: Complexity}, number = {1}, arxiv = {http://arxiv.org/abs/2306.05971}, doi = {10.1088/2632-072X/adb234}, year = {2025}, abstract = {Cooperative dynamics are central to our understanding of many phenomena in living and complex systems. However, we lack a universal mechanism to explain the emergence of cooperation. We present a novel framework for modelling social dilemma games with an arbitrary number of players by combining reaction networks, methods from quantum mechanics applied to stochastic complex systems, game theory and stochastic simulations of molecular reactions. Using this framework, we propose a novel and robust mechanism for cooperation based on risk aversion that leads to cooperative behaviour in population games. Rather than individuals seeking to maximise payouts in the long run, individuals seek to obtain a minimum set of resources with a given level of confidence and in a limited time span. We show that this mechanism can lead to the emergence of new equilibria in a range of social dilemma games.}, language = {en} }